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1. INTRODUCTION

1.1. Contents of the Paper

The aim of this paper is the construction of an approximation of Sobolev
spaces W'(R*) by some spaces of discrete functions. The approximation
butlt here is analogous to the finite element approximation of the spaces
H™(R*) presented by Aubin [1].

The following definition of an approximation of a Banach space X
is used. Let us assume that H’ is a set possessing an accumulation
point denoted by 0 and that H=H' {0} The system (X, p,r}=
N X4s Pus¥3) hen is called a convergenl approximation of X if X, are
Banach spaces normed by | -|,, ps: X, — X (prolongation) and r,: X — X,
(restriction) are lincar operators, and

IM>0Vhe HYfeX  |r, fli,<M|f]|x.
M >0Yhe HVue X, fppull v < Mlull,.
VeX  lim Ilf—puryfle=0; (12

(1.1)

the approximation is called stable if

IK>0Vhe HVue X, | puul v = Kllull ,. (1.3)

The construction of an approximation of spaces W (R’) presented here
is based on the concept of discrete and integral partitions of unity. The
partition of unity is built by the use of multivariate box splines, defined by
dc Boor and Héllig [2]. It is observed that the functions =, and u,,,,
used by Aubin [1] for constructing the prolongation operators are box
splines.
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The first section contains definitions of box splines and of the spaces of
mesh functions which are used as the approximating spaces X,. In the
second section an approximation of W(R*) is defined. It is shown that
this approximation is bounded and convergent—that is, it satisfies condi-
tions (1.1), (1.2)—and that the rate of convergence depends on the moduli
of continuity of the given function. The necessary and sufficient conditions
for the stability of the approximation are given. Last, we present an exam-
ple of the application of such a method to the approximate solution of an
eigenvalue differential problem.

Section 3 contains the proofs of all the results from Section 2.

1.2. Notation

The set of all positive real numbers is denoted by R, and the set of
nonnegative integers by Z,. A vector xeR® is written as the column
(X1, x,)". If x, peR%, zeR’,, then |x|, is the [,-norm of x,|x|=
1] (s X2 3= (] ¥is o X, ¥ X/2= (X, /21, v X5/25)7, and if xeR® and
zeR¥, or xeZ° and zeR’ then

The symbol e; denotes the unit vector of the ith axis; e is the sum of all
vectors e,.

The spaces L,(R*), L,(R*), W(R®), Wr(R*)' (meZ,,1<p< )
are defined as usual. The symbols L,(R"),, W}(R’), denote the subsets
of L,(R*) and W(R") consisting of all functions which vanish out of a
bounded set. The norm in L,(R°) is denoted by ||-]|,, and the norm and
seminorms in W'(R’) are given by

Hfﬂp.m=[ 5 uDkfu;:]

|kl <m

lflp,n=[ y nD"fn;:} T 0<nsm)

|kl =n

with the usual extension for the case p = oo. The moduli of continuity are
defined as follows (cf. [4]): if fe L (R*),r>0,reZ, then

w,(t, fY=sup{||4"(z) fl,: |z <1},
where

@@= T (1) frdms, xzew:

n=0
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if fe W;,“(RS) then

tp
w1, D"'f)=[ Y ol D"f}"] :

k| =m _

1.3. Mesh

Let us now define the mesh on R’° and some spaces of mesh functions.
Let H<=R’, be a bounded set of parameters with 0 as a point of density.
For fixed fie H, the mesh on R® is the set

R,={xeRx=IchlecZ".

The space of all functions u: R, — 4 (where 4 is a linear space) is denoted
by m(R;, A4), m(R;}=m(R;, R). The set of mesh functions vanishing out of
a finite set is denoted by m(R;, 4),. The operators of finite differences, &*
and &* (keZ°, ), are defined in the following way: if e m(Rj, 4), xe R},
then

Fulxy=h"% Y (—e)"'“"(i)u(x—'rjch),

0</j<k NS
k ~k k- (R ;
% ulx)=nh Y (=e) | _)u(x—fch).
o<k \J
The following spaces of mesh functions are considered:
L,(R;)—the set of all ue m(R;) such that the number
1p
llullp=[h" > Iu(-’f)lp]
.\'EIR;;
is finite; |[-|l, is the norm in L,(R3});
W7(R;) (meZ, )—the set L,(R}) with the norm and seminorms

uuu,n_m{ ¥ na"uug] :

\kl<sm
Lp
“’llp,n:[ Z ”aku”5] (OSI’ISHI}.
lki=n
1.4. Box Splines

In this section, box spline functions, which will be used to construct an
approximation of W7'(R*), are defined. As in [3], let X'= {x',..x"} bea
set of vectors from R* (not necessarily distinct), let

{X»=span X =R,
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and let the number d(X) be defined by
d(X)=max{m:forall Y X, | Y| =m implies (X\Y) =R’}

(where | Y] is the cardinality of ¥). The multivariate box spline By is the
function satisfying the identity

j Bx(x)f(x)dxzj f(Xz)dz  (where I=[0,1])  (l4)

for every fe C(R®) (X is identified with the matrix [x, .., x"]).
We use the following matrices in our study:

E.=le, e, €2y meq,n, ey, ;] (keZ®).
e e e e

k1 k> ks

For the purpose of constructing an approximation of the space W'(R?),
we introduce the following classes of matrices:

F={X<Z"E, <X dX)=2m} (meZ.,).

me

Let us observe that %= {X<Z’: {X) =R’} and if m >0 then the matrix
X\E,, (consisting of an arbitrary number of columns) has at least one
nonzero element in each row. As an example, the functions yu,, and
Tm+ 1), Used by Aubin [17] to build an approximation of H™(R®), are box
splines generated by the matrices E,,,ve and E,, . .= E,. U E,, respec-
tively. These matrices belong to &%,.

It follows from the results presented by Dahmen and Micchelli in [3]
that B, belongs to C4¥)~!(R?). In the same way it can be proved that

Bye WIX(RY),. (1.5)

2. FORMULATION OF RESULTS

In this section an approximation of L,(R’) and W}'(R°) is constructed.
In Section 2.1 the operators of restriction and prolongation which satisfy
conditions (1.1) and (1.2) if X= L (R’) are constructed. In the next section
the box splines are applied to the construction of an approximation
of W(R’), Section 2.3 contains the conditions for stability of the
approximation. Last, in Section 2.4 an example of an application of the
approximation is presented.
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2.1. Approximation of L,(R°)

Let 4 and B be functions from L_(R*), and let us define the operators
prim(Ry) = L (R%), rit: Li(R*)'°° - m(R:) by the formulas

(pru)x)=Y B(x/h—1yul(i>h) (2.1}
leZs
for each u e m(R3) and almost every xe R’
(A W ohy=h=¢| Alxih—1) f(x) dx (22
Jgs

for each fe L (R¥)", [e Z°

THEOREM 1. Let A, BeL_ (R),,1<p<x. If felL,(R’) then
ra fe LR}, if ue L(R;) then pfue L ,(R), and

I Fl, <Colfll,s  IpRul, < Collul,. (2.

Thus, condition (1.1) from the definition of the approximation is fulfilled.
To obtain the convergence, we need more assumptions concerning the
functions A, B. Let us define the sets

Led

\

P = {A €L, (R*),: [ A(x) dx = 1}\,

Py= {BeLm(RS),,: B(x+1)=11{or almost every x € RS}.

le Z¢

If Ac?,Be P, then pf1=1,r'1=1, and therefore the elements of %,
and 2 are called the discrete and integral partitions of unity. It is shown
in Section 3.5 that

PP (2.4)

[

As an example of a function from #,, a box spline can be taken, since (as
follows from the Corollary to Proposition 3 in [27)

if Xe S then Bye Z,. {253
THEOREM 2. Let Ae P, BeP,. If feL,(R'), 1< p< o, then
Lf = pir fl, < Cyo(ihl .. 1) (2.6}

if, moreover,

pririg=g  Vgell(®) (273
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(where I1,(R®) is the set of all polynomials of degree not greater than r), then

ILf = piri fl, < Caw,yi(lhl o ). (2.8)

It is shown in Lemma 3 that there exist functions 4 and B satisfying
condition (2.7).

2.2. Approximation of W (R’)

The construction of the approximation of W (R®) is done with box
splines. If X e, then, following properties (1.5) and (2.5), Bye %, and

p®ue W (R®). The following notation will be used:
if Xe ¥ then p¥ = p5x;
. SR (29)
if X=E,u Ythen B, =By, pi¥=pi*

Let us now formulate two lemmas which allow us to build an approxima-
tion of W}'(R’).
LemMA 1. Let j,keZ°,,j<k. If Y is a matrix such that E, ;0 Ye%

then for every ue m(R3)

Dipk-Yyu=(— 1)/ pk=iYas y, (2.10)

Lemma 2. Let Ae L (R%),, keZ’,, |k| =n<m. Then for every function
fe ”/TI(RS)IOC

oFrt f=rODK, 3Ryt f=(—1)rPDx (2.11)
where A(k)=Q%A, A(—k)=Q* ,A, and

Q4N =] flx—zEy)dy  (I=[0.1)  (212)

for every fe L,(R*)*, ze R".

The [ollowing theorem is a consequence of Theorems 1,2 and
Lemmas 1, 2.

THEOREM 3. Let Xe %, Ac 2. If fe WI(R®) then ri fe WI(R); if
ue W(R3) then pyue W (R°) and

Ir}/jflp,ngcl Iflp,n? |p;1‘,ulp.nslulp,n= (213)
]f<—_P;},’;zi.f|pn< C5CO1(|]'I|, an) (Ogném) (214)

If, moreover, condition (2.7) is satisfied with r = m then
= pXri flon<Cow, i (A, Df)  (0<n<m).  (215)
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The application of box splines allows us to obtain an approximation
satisfying condition (2.7). The following lemma is true.

LemMa 3. If Xe ¥, Ge P, then there exist real numbers ¢, (k| <r)
such that if A(x)=3 4 <, G(x—k) for almost every x€R®, then condi-
tion {2.7) is satisfied.

2.3. Stability of the Approximation

In this section the stability of the approximation is investigated.
Theorem 4 gives conditions which are equivalent to stability condi-
tion (1.3). The corollary estimates the norm of p; v by the norms of lower
degree.

THEOREM 4. Let Xe ¥, m>=20, 1 < p< oo, The following conditions are
equivalent:

|det Y| <1 for such each Y = X such that | Y| =s: {2.16}
there exists A€ P, such that rji p)fu=u for each ue m(R;); (2.17;

there exists a constant K> 0 such that | pfull, =K lull ..
for each he H and every ue W'(R;). {2.i8}

4

COrOLLARY. Let Xe, m>0, 1< p<oc. If conditions (2.16)-(2.18}
are satisfied then there exists C>0 such that for each ue W](R;),

loxull,m<Clefh)™ " | p)ull,., if 0<n<m. {2.19)

24. Example of Application

Let us consider the bilinear from, defined on the space X = H ([0, 11?)
= W),

2
alf,g)= ) <b;D,f.D,g>+<bfg> VfigeX

Li=1

where b, b are sufficiently smooth functions defined on R? and

hey=[fx)gx)ax  for [ geLyI?)

Let a be X-elliptic and let us consider the eigenvalue problem (2.20)

find A1e Rand f e X\ {0} such that
alf, g)=4{f &>  VgeX (2.20)
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Let us consider a space F and a continuous linear injection . X — F.
An external approximation of X is the system &/(X,p,r, F, )=
{(Xp» PnsTW)}hen» where p,:X,—F and r,:X—X, are uniformly
bounded linear operators (cf. (1.1)) and

eXx o lim [f—pyriflle=0.

Let the parameter he H be fixed and let us consider the bilinear form
introduced by Aubin [1],

ay(u, v)y=a(pyu, p,v) Yu,veX,, (2.21)

where a is an extension of a onto the space F, that is,

awf,g)=alf, g) Vf geX.
The approximate eigenvalue problem is stated as follows:

find 1,eR and u € X\ {0} such that
au,v)=A,[uv] Yoe X, (2.22)

(where [u, v]=h"Y, 5 u(loh)v(l-h)). This problem (in a more general
formulation) was considered by Reginska [5], who proved the con-
vergence of the solutions of (2.22) to the solutions of (2.20). One of the
assumptions made in [5] is that the approximation satisfies the additional
condition

for every he H there exists a subspace V,< X which is
complementary to the null space of r, and

en=sup\Yf — pursu Sl fEV Iflx=1} >0 as h—0. (2.23)
Reginska [6] proved that condition (2.23) is satisfied iff

for every he H there exists an operator g,: X, = X such
that r,q,u=u for each ue X, and

gy=sup{llppu—YquulpueX, ul,=1} >0 as h—0. (224)

Now, let us build an approximation of X. As in [1] and [6], let
F=L,(I*)x Ly(I*, D) x Ly(I*, D,), where L,(,D;) is the space
{(feLy(Q):D,feLy(Q)}, normed by |fI2,=]/13+D:fI3 and let
V= ff)lor feX.

Let H={(1/n, 1/n)}*_,; we will write 4 instead of (4, 4). Let X, Y, Z
be matrices from % such that ByeL_(R? D,). B,eL _(R? D,); let
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N=supp Byusupp ByusuppB,, and I;= {ih:leZ? ih+Nh=I"}. Let
X,={uem(R:): u(lh)=0if /¢ 17}, and

pu=(p*u, pTu. pZu)l . {2.25)

where p*. p?, p? are the prolongation operators defined by (2.9) and (2.1)
(the subscript ., is suppressed). Further, let 4 be a function from #, and
let

(rg)(Ih) = (rg)(Ih)if Ihe I2,  (rg)(lh)=0iflh¢ 2,  (2.26}

where g is the function from W;(R?) defined by

#(x)=g(x)ifxe Fxy=0ilx¢ 1%

It follows from the results presented in Sections 2.1 and 2.2 and from the
results of Aubin [1] concerning the approximation on subsets of R? that
(X, p,r, F, ) is an external approximation of X.

Let us investigate the approximations generated by different matrices
X, Y, Z. Reginska proved in [6] that the choice proposed by Aubin [1],
X=1les,e;}, Y=1[e,,e,,e;], Z=1Te,, e,, e,], does not satisfy condition
(2.24). However, the following result is true.

LeMMA 4. Let us assume that X€ %, and that Y belongs to H and
satisfies condition (2.16). Let Z =Y. Then there exists a function A € 7, such
that the approximation (2.25)}-(2.26) fulfills (2.24).

Let us now construct the approximate problem. Let the approximate
bilinear form be defined by (2.21) with

alf, @)= 3 <byDifi D;;>+ (bfo. 00 (227)
i 1

J

if 7= (fo- f1. /), 8= (g0, &1» &2) € F. Tt is proved in Section 3.7 that

(8,77, p™0 w4+ r¥bp¥u, v], {2.28)

1

ay(u, v)= —

i,

T e

where Y(i)= Y, 0;,=0% &7 = —¢. Thus, if Y =/[e;,e,,e], X=
[ey.e,], then we obtain the difference scheme

- ‘Z [e.Bac; +534([iﬁf‘,3—1)ai+6,"/3(-3—1.:'53:{] u+ Bou=2,u,

=1
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where

B.u(lh) =j b, (h+ &h) dE,

4,

={(x;, X, 0<x; <!, x;<x;_,<l4+x},

i

4,
Bu(lh)—J b, (Ih+ &h) de,

By

Bie={(x, %) 0<x; _,<x,<1},

Bolth)= | _bolh+2h) de.

tu(lh)y=u(lh + e;h)

(i, jk=1,2,le Z*). This scheme is based on seven points; for any other
choice of Y the scheme connects more points.

3. PrROOFS

In this section all the results are proved. First, some definitions are intro-
duced which will be used in the proof. Section 3.2 contains some auxiliary
formulas, and in the next sections all the lemmas and theorems are proved.
3.1. Definitions

First, if f, g are measurable functions on R’ then
frgd=| f1x) glx) dx

(if the integral is well defined).

The operators of translation, T,, difference, S*, and multiplication of
the argument, M, (zeR’, yeR’ ,keZ’ ), are defined as follows. If
fe L (R, xe RS, then

(T ) = flxt2) (M, )x)= flxe ),
Stf= ¥ (—e)k‘f'(';)r,wzf.

0<j<k

(3.1)

The following power functions are used:

e (x) = x*/k! for xeR’, kez’,.
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If X is a linear topological space, ue m(R; ), vem{R;, X), then

[, 0]=h* Y w(l=h)ye(l=h)

le 73

provided that the series is convergent in the topology of X.
Let AeL_(R%),. We define the function v;}: R} - L_ (R}, by

villehy=h"°T_, M, ,AforeachicZ"
thatis, (v (/-h))(x)=h"A(x/h—]). {3.2)
Using these definitions, we can represent »; and p} in the form
(i Weh)y=<og(=h), /> or rif f=Cvy. ) {3;3)

pru="[u, v;]. 3.

“l
h

Similarly to definition (2.9), if Xe.% then we write v} instead of 7" if
X=E,uY then vp " =0pP~

Finally, let A, Be L _(R*), and let us define the function W, by the
formula

W plx, z)= Z Alx+z—=1)B(x—=1), x, ze R {3.5})

|
leZ>

3.2. Auxiliary Formulas
Let us start from the following properties of box splines, which follow
from formulas (2.7) and (2.10) in [27:
D'B, y=(—-1)"'S7 B, .y if jkeZ',,j<k E,_,uY¥Ye%%; (38)
B, v=0.B, y if j,keZ' ,E,uYed%. {27}
The following property of the moduli of continuity, which is taken from

[47], will also be used in the proof: there exist positive constants M,. ¥/,
(depending on p, r) such that for every function f'e L (R*)

Mot ) <K, )< Myo,(t, £). (3.8)

where K, (1, /) =inf{|f ~ gll, +7|gl,.,: g € H(R*)}, and H(R*)= Wy(R*)
if p< oo, H (R')=C(R°).

Now, let us give some formulas which can be proved easily. if
feL(R)° and ge L, (R*), or fe L (R) and ge L, (R"), Up+ 1o =1,
then

(SEfe>=Xf5_¢g>, @ fig)=Xf0".g> 3.9}
(the operator Q% is defined by (2.12}).

640 61 -5
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If /€ L;(R*)"*° then
T.M,f=M.T. f, QM,f=M,Q". f T.,Q5f=0'T.f; (3.10)
if fe Wm(R®)", |k| <m, then
DM, f=y*M,D, DT,f=T.DY, S“f=yQ* D' (3.11)
Next,
Ck(x+y)=o ) ka-,-(X)C,-(}’), culxoy)=xfely);  (3.12)
<j<
Dicy=c,_;iff0<j<k, D¢, =0 for other vectors je Z°, . (3.13)
If ue m(R;}) and ve m(R},, X), or ue L,(R}) and ve L,(R3}), then
[u, &*v]=[0* u, v]. (3.14)
IfaeL (R%),.keZ"’_, then
Skvf=hrok v,  S* v =h o v (3.15)
(that is, for each x e R?, Sk(vi(x))=h*(3* vi)(x)).
Now, let us give several formulas which will be proved in the next
section. If 4, Be L (R%),, ke Z*, ,uem(R3), fe L,(R*)"°, then
Sk pBu=hpfotu, (3.16)
oFr f=h"*rSk £, ok rt f=n"*rS*, f (3.17)
WjkeZ’ ,E,vYe%, uem(R;), then
PiETu=Q4(pk ). (3.18)
If Ae L (R*),, keZ’_, then

rice= 3 alhle,_;,  af=d{4,¢); (3.19)
o<j<k
if Xed, keZ’ , k| <m then
prc= Y Bihic, BY= 3 By(—1)cil). (3.20)
0 <k le?s
3.3. Proofs of Auxiliary Formulas

Below, the parameter A is fixed, and hence the subscript «,» is
suppressed.
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Proof of Formula (3.16). Following definition (3.1} and formulas {3.4),
(3.15), (3.14), we have

Sk pPu=[StoB, ul=h[é* o8 u]
=h*{e8, & u) = h*pPotu. |
Proof of (3.17). According to (3.3), (3.15), (3.9), we have
Frif = (ke fr=h""(S* et f
=h ", S5 fY=h"" 1S [
the second formula can be proved similarly. §

Proof of (2.10) and (3.18). We prove here that formula (2.10) from
Lemma 1 is true, since it will be used in the next proofs. It follows from
(3.2), (3.11), (3.6), (3.10), and (3.15) that

Djlvk’y(IOh)=hfeDjT_/:hA’[gth,Y
=h7€_jT—/:hMe lleBk. Y
211_37'/'(—‘1)\” T—-[ hﬁl‘(f'hslreBk*l}y
=h™ =S, T M 4By
= ( ——I)UI h—/Sj,/,vkr/. Y
Sy N

Therefore, due to (3.4) and (3.14),
DIty = (= Y057, 1] = (— )ALk, &7 ],

and formula (2.10) is proved. Formula (3.18) can be obtained similarly by
use of (3.2), (3.7), (3.10), and (34). 1

Proof of Formula (3.19). Introducing a new variable of integration,
y=x/h—|[ into definition (2.2), and using (3.12), we obtain

r"c,ﬂch):j A(p) ep(yoh+1oh) dy
.

=Y ck_j(lcxlz)fR‘_A()')h’c,(y)cb;

o< /<k
which was to be proved. |

Proof of Formula (3.20). The proof is carried out by induction with
respect to m. If m =0 then (3.20) holds; let us thus assume that it also is
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true for some m=n—1320. Let Xe &, and |k| <n; let us represent X in the
form X=E, v Y. Let 1 <i<s and z=¢,. According to (2.10), we have

D pYe, = —p™ Y07 ¢,. (3.21)
Let us denote k; by d; using (3.12) and the formula
crle)=1/rlitk=re,reZ,,  cle;)=0forotherk,

we deduce that

d—1 (__h)rz

5ick= - Z

Lo (r+1

)' Ck—:fr:'

The matrix E,,_.uY belongs to &,, hence, applying the inductive
assumption to the right-hand side of (3.21), we obtain

szne' YCk:dil (—h)rz z ﬂ’.1g—_'. thck—z—r'— ..
r=0 (r+1)!0$j<k—:fr: ’ o

Changing the variables of summation (g =j+ rz), we come to the formula

z LY LY
DpYe, = Y Voo thick_-_

O<gshk—= (322)
yne,Y=§ (_1)’ ﬁne—z,Y
=TS TG

Formula (3.22) is true for each vector z =e¢;, hence p"* "¢, is a polynomial
of the form

pne, Yck= Z EZZ‘Y(I‘I)Ck—q' (323)

0<g<k

ne, Y

Computing D*p™ ¢, from (3.23) and (3.13), and comparing the result with
(3.22), we obtain the formula 73 Y(h) = "y Y from which we deduce that
epe '(h) does not depend on k. Thus,

pXe,= Z ﬁ}(hjck_j if XeS,, 1, lkl<m+1, (3.24)
0<j<k

and ﬁ;‘ can be calculated by taking k=g and evaluating both sides of
(3.24) at 0 with formulas (2.1) and (3.12). |

3.4. Approximation of L,(R’)

In this section the results from Section 2.1 are proved. All the proofs are
carried out in the case p < oo; the extension for the case p= oc is simple.
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As in the previous section, the parameter / and the functions A, 5 are
fixed, and hence we write p, r instead of pZ, r;!.

Proof of Theorem 1. Following the definitions of rf and of the norm. we
have

N\ PP
V1

uffnps[/f'“”' ) ( J M=z ax )|

le &

Applying Holder’s inequality to the product of |A(x/h—17)|"7 |f(x}| and
|A(x/h—1)|*#, we obtain estimate (2.3) with

Co=lARP 1247, where Zp(x)= Y [F(x+1).

le Z¥

The estimate for || pull, can be obtained similarly, and

Co=|BIli7 12417 1
Proof of Formula (24). 1If AP, then

fA(x)dx:Zf A(x) dx = J",A(x+i)dx

R lezs i+ rezs !

~

=| ¥ A(x+1)de=1

al rs
lelZ’

(the sum commutes with the integral, since supp 4 is bounded), and thus
Ae 2, which was to be shown. |

Proof of Theorem 2. The proof consists of three parts. First, we prove
formula (2.6). Next, we prove Lemma 5, which gives the estimate of
I.f — pefil, in the case where fe W)™ (R*) and (2.7) is fulfiled. The third
part is the proof of inequality (2.8).

FProof of Inequality (2.6). Following definitions (2.1}, {2.2), and (3.5) we
have

(o]
™)
Ln
~—

rf(x) = L W o s(x/h, 2) flx + 22 h) de. (3.

where Q2 =supp B—supp 4. It can be shown that supp W (x, -} 2 for
almost every x e R*, and

IW sl . < My =min([ Bl . 12l 14 125l <) (3.26;
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Moreover, since Be %, and A e #, for each xe R,

J‘ W o p(x, z) do=1.
Q
Therefore,
P
I =iz [ | W,,Bwh,z)SZj,,f(x)dz] &, (327)
R Q
and hence

If = prflg <M sz 1S f(x)] dz]pdx.

Applying Holder’s inequality and changing the order of integration, we
obtain the estimate

If = prf g < ME VOl @) ! | 1S, I} d.

Hence, formula (2.6) is satisfied by

Cy= M, vol(Q)(1 +diam(Q L {0})). |

LemMMa 5. If the assumptions of Theorem 2 are satisfied and
feW,*Y(R®) then

L= prf i, < My B 1 e (3.28)

Proof. First, if condition (2.7) is satisfied then, following formulas
(3.25) and (3.12), for every k€ Z°,_ such that k] <r we have

u(x) = L W (/B 2) el + 2o h)dz

= ¥ th“ W osl(xfhy 2) c)(z) dz ¢ (x).

o< <k Q

Hence,

|, Waslxth,2) ez de =00 i jeZ'Llf<r (329)
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N
el

Now, let f'€ W;“(IRS). Substituting Taylor’s formula

S.,f(x)= Y  hfedz) D* f(x)

O<lkl<r

+ Y o) J°[(;-+ (1 = &) D*f(x + &= hy de

lkl=r+1
into {3.27) and using formula (3.29), we obtain
1f—prfl2 =J {f Wos(xih, 2) Y hreds)
R o

lkt=r+1

NP
x[ (r+ 1)(1 — &) D (x + &z h) dE d} dx.

I

By applying estimate (3.26) and Hélder’s inequality, and changing the
order of integration, we can deduce that (3.28) holds. §

Proof of Formula (2.8). Let us take an arbitrary function ge H,~ (RS,
Then

Wf~prfll,<|f—gl,+llg—prgll, +lprig— ),

Applying Theorem 1 and Lemma 5, we obtain
Lf=prfl, <A+ CC) I f = gllp+ My thl™ Vgl s
We can derive formula (2.8) from this estimate using inequality (3.8}. §

3.5. Approximation of W (R")

Lemma 1 was proved in Section 3.3. Let us prove the remaining results
of Section 2.2. As in Section 3.3, the subscripts «,» are suppressed.

Proof of Lemma 2. According to (3.11), S} f=hk"Q% ,D*f Thus, it
follows from (3.17) and (3.9) that &*r*f = (Q%s*, D*/>. But, following
(3.2) and (3.10),

Qv (loh)=h—QsT _, ,M,,A
=h=T_, \M,,0"4=v""(I:h).

Hence, the first formula from (2.11) is proved; the second one can be
obtained analogously. [

Proof of Theorem 3. If Xe %, then X=F, , uvYand £, _,u¥eHKif
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jeZ’ ,|jl <m. Moreover, if 4e# then A(j)eZ. Hence, it follows from
Lemmas 1 and 2 that

DijrAfz pme¥j, Y,,A(f)le, (330)

and inequalities (2.13), (2.14) can be deduced from Theorems 1 and 2 (the
constant in the second inequality in (2.13) equals 1, since B is nonnegative
and belongs to #,). If condition (2.7) is satisfied, then putting /=c,
(|k| < r) into (3.30) and applying formula (3.13), we obtain the equality

pmeT "r’“"’cq=cq if |gl<sm—r,
which is the analogue of (2.7) for B,,. ; y and A(j). Thus, estimate (2.15)
also is satisfied. ||

Proof of Lemma 3. 1t follows from definitions (2.1), (2.2) that if A4 is
defined as in the lemma, then for every f e L(R%)",

pirif= 3 &T, 'S
kl<r
Hence, taking f'=c; where |j| <r, and applying (3.19), (3.20) and (3.12),

we obtain the equality

Pre=Y & T Y T ol B (R,

&l <r 0<g<j O<sn<q O<gisgn
which in an elementary way can be transformed to
X4, __ G X i
pri=3%Y Y & ) Y e, a—nCalk) He; ..
0<i<j fkl<r 0<g<i O0<n<gq
Hence, the system of equations, p*r“c,=c; if | j| <r, is equivalent to the

system of linear equations

ol XYl B Ledk)=60  lil<r,

k| <r 0<g<iO<n<g

which is uniquely solvable due to the fact that the matrix (c,(k))
is nonsingular and af = 5 = 1. Hence, the lemma is proved. |

In|<r |kl <r

3.6. Stability of the Approximation

Proof of Theorem 4. First, we prove that (2.16) implies (2.17). It follows
from the definitions of p* and r* that condition (2.17) is equivalent to

VIeZ’ (A, T,By>=dq,. (3.31)
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Let N be an arbitrary open set such that Nnsupp By# & and let £=
UeZ*: N (supp By—1)# F}. If (2.16) holds then, according to the
theorem of Dahmen and Micchelli [3], the set {(7,B)|y: /e K} is linearly
independent. We want to find a function 4 which satisfies {3.31) and the
conditions

supp 4 < N, Aly= Y .G, where G, ={(7,B,)| v

ve X

Substituting these formulas into (3.31) we obtain the system of linear
equations for vy,

Z y\'<GvﬂGl>:601’ [GKs
ve K

which is uniquely solvable due to the linear independence of the functions
G,. Summing up Egs. (3.31) with respect to /, we can show that 4 e 2;
therefore condition (2.17) is satisfied.

Now, let us prove that {2.17) implies (2.18). Following Theorem 3, if
(2.17} holds then for every ue W}(R}),

[dll o= 7D Ul o < C | 270t e

Thus, (2.18) is satisfied.

Finally, we must prove that if condition (2.16) is not satisfied then {2.18)
does not hold. Let Y be such a submatrix of X that v={det Y{>1 It
follows from definition (1.4) that By=v 'y, ., where N, =int(supp B,).
Further, since B, belongs to #,, the set K, ={/€Z*: N, n (N, [} # ]
contains v elements and every vector /e 7° can be uniquely represented in
the form i=/+ Yj, where [e K, je Z°.

Let L > 1 be a fixed number, let n, g be two different elements of £, and
let us define the mesh function

vl + Yj)-h)= (5/n—5/q) Xro. Le](([+ Yj)eh).

where [0, Le]={xeR:0<x<Le}. It can be shown that there exist
numbers £, & independent of L, # and such that

ELSP lefhl" <o), , < EL57 lefhl”, O0<r<m.
/ p.r [ AN

Let us now comsider p*v. First, let us observe that p’r is nonzero in a
neighbourhood of the boundary of [0, Le]; strictly speaking. there exists 5’
such that pTv(x)=0if xe[n'h, Le—y'h] or x¢ [ —y'h, Le +y'h]. Hence.
according to (3.18), there exists n independent of L.#4 and such that

&4 6L 1-6
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p¥uo(x)=0 if xe[nh, Le—nh] or x¢[—nh, Le+nh]. Therefore, there
exists a number x such that

|p*vl,, <kLE™"7 |e/h|" |R|*?,  O<r<m.

Since L can be taken arbitrarily, (2.18) is not satisfied. Thus, the proof is
finished. |

Proof of the Corollary. Tt follows from Theorem 3 and condition (2.18)
that

1PXul o <Nttll s 1 2%ul 0= K ],
Formula (2.19) follows from these estimates and the inequality
[t . <2777 le/h|" 77 ul,, if r<n<m.

which is true for every ue W7'(R;) (and follows from the formula [|0°u||, <
2 ||lull,/h;). This completes the proof. 1|
3.7. Proofs of the Results from Section 2.4

First, let us prove the following formula: if 4e L (R®),, fe L, (R°),
ue L,(R3}), then

{ptu, Y =[u, r'f]. (3.32)

It follows from Theorem 1 that if the above assumptions are satisfied, then
both sides of formula (3.32) are well defined and

hufy=| lim gx)dv,  [wrif]1=lim [ g,(x)dx,
where

gx)=" Y f(x)Alx/h— 1) u(lh).
leZ.|l\<n
Since the support of 4 is bounded, g,(x) — f(x) p“u(x) almost everywhere.
Moreover, g, are uniformly bounded by an integrable function: |g,(x)| <

[ £(x)] p*(lul)(x). Hence, the limit of integrals equals the integral of limits
and thus, formula (3.32) is proved. ||

Proof of Lemma 4. According to Theorem 4, there exists a function
A e 2 such that r*p"u=u for each ue m(R;). Thus, it follows from defini-
tion (2.26) that

rpYu=rip*u=uy  foreach uelX,. (3.33)
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1
[

Therefore, if g= p*, then the first condition from (2.24) is satisfied. Next,
it follows from the definition of F that

lpu —qull = | p*u~ pul,.

According to (3.33), every function we X, can be represented as
u=r"f, where f=pYue WHR?), and ||f],,<K ||lu]l, , due to Theorem 1.
Applying Theorem 2, we obtain the estimate

1P = p e <™ = f a4 1677 = FI < K s 11
Thus.

[pu—Yqu|| < K |ul, 5 |h|, and condition (2.24) is satisfied. §
Proof of Formula (2.28). Following (2.21), (2.27), and (2.25),

ah(u’ U): Z <bijD.er“s Dij‘U> + <pruq [')X!':>’

Lj=1

Applying formula (2.10) we obtain D, p'u= p™'¢ u, and thus, formuia
{2.28) can be obtained by the use of (3.32) and (3.14). §
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