Application of Box Splines to the Approximation of Sobolev Spaces

Jan Krzysztof Kowalski
Polish Academy of Sciences. Institute of Mathematics. Sniadeckich 8, PL-00-950 Warsaw. Poland
Conmunicated by Charles K. Chui
Received March 2, 1988

1. Introduction

1.1. Contents of the Paper

The aim of this paper is the construction of an approximation of Sobolev spaces $W_{p}^{m}\left(\mathbb{R}^{s}\right)$ by some spaces of discrete functions. The approximation built here is analogous to the finite element approximation of the spaces $H^{m}\left(\mathbb{R}^{s}\right)$ presented by Aubin [1].

The following definition of an approximation of a Banach space X^{\prime} is used. Let us assume that H^{\prime} is a set possessing an accumulation point denoted by 0 and that $H=H^{\prime}\{0\}$. The system $\mathscr{A}(X, p, r)=$ $\left\{\left(X_{h}, p_{h}, r_{h}\right)\right\}_{h=H}$ is called a convergent approximation of X if X_{h} are Banach spaces normed by $\|\cdot\|_{h}, p_{h}: X_{h} \rightarrow X$ (prolongation) and $r_{h}: X \rightarrow X_{h}$ (restriction) are linear operators, and

$$
\begin{gather*}
\exists M>0 \forall h \in H \forall f \in X \quad\left\|r_{h} f\right\|_{h} \leqslant M\|f\|_{X}, \\
\exists M>0 \forall h \in H \forall u \in X_{h} \quad\left\|p_{h} u\right\|_{X} \leqslant M\|u\|_{h}, \tag{1.1}\\
\forall f \in X \quad \lim _{h \rightarrow 0}\left\|f-p_{h} r_{h} f\right\|_{X}=0 ; \tag{1.2}
\end{gather*}
$$

the approximation is called stable if

$$
\begin{equation*}
\exists K>0 \forall h \in H \forall u \in X_{h}\left\|p_{h} u\right\|_{x} \geqslant K\|u\|_{h} . \tag{1.3}
\end{equation*}
$$

The construction of an approximation of spaces $W_{p}^{m}\left(\mathbb{R}^{s}\right)$ presented here is based on the concept of discrete and integral partitions of unity. The partition of unity is built by the use of multivariate box splines, defined by de Boor and Höllig [2]. It is observed that the functions $\pi_{(m)}$ and $\mu_{(m)}$ used by Aubin [1] for constructing the prolongation operators are box splines.

The first section contains definitions of box splines and of the spaces of mesh functions which are used as the approximating spaces X_{h}. In the second section an approximation of $W_{p}^{m}\left(\mathbb{R}^{s}\right)$ is defined. It is shown that this approximation is bounded and convergent-that is, it satisfies conditions (1.1), (1.2)-and that the rate of convergence depends on the moduli of continuity of the given function. The necessary and sufficient conditions for the stability of the approximation are given. Last, we present an example of the application of such a method to the approximate solution of an eigenvalue differential problem.

Section 3 contains the proofs of all the results from Section 2.

1.2. Notation

The set of all positive real numbers is denoted by \mathbb{R}_{+}, and the set of nonnegative integers by \mathbb{Z}_{+}. A vector $x \in \mathbb{R}^{s}$ is written as the column $\left(x_{1}, \ldots, x_{s}\right)^{T}$. If $x, y \in \mathbb{R}^{s}, z \in \mathbb{R}_{+}^{s}$, then $|x|_{p}$ is the l_{p}-norm of $x,|x|=$ $|x|_{1}, x \circ y=\left(x_{1} y_{1}, \ldots, x_{s} y_{s}\right)^{T}, x / z=\left(x_{1} / z_{1}, \ldots, x_{s} / z_{s}\right)^{T}$, and if $x \in \mathbb{R}^{s}$ and $z \in \mathbb{R}_{+}^{s}$ or $x \in \mathbb{Z}_{+}^{s}$ and $z \in \mathbb{R}^{s}$ then

$$
z^{x}=\prod_{i=1}^{s}\left(z_{i}\right)^{x_{t}}
$$

The symbol e_{i} denotes the unit vector of the i th axis; e is the sum of all vectors e_{i}.

The spaces $L_{p}\left(\mathbb{R}^{s}\right), L_{p}\left(\mathbb{R}^{s}\right)^{\mathrm{loc}}, W_{p}^{m}\left(\mathbb{R}^{s}\right), W_{p}^{m}\left(\mathbb{R}^{s}\right)^{\text {loc }}\left(m \in \mathbb{Z}_{+}, 1 \leqslant p \leqslant \infty\right)$ are defined as usual. The symbols $L_{p}\left(\mathbb{R}^{s}\right)_{b}, W_{p}^{m}\left(\mathbb{R}^{s}\right)_{b}$ denote the subsets of $L_{p}\left(\mathbb{R}^{s}\right)$ and $W_{p}^{m}\left(\mathbb{R}^{s}\right)$ consisting of all functions which vanish out of a bounded set. The norm in $L_{p}\left(\mathbb{R}^{s}\right)$ is denoted by $\|\cdot\|_{p}$, and the norm and seminorms in $W_{p}^{m}\left(\mathbb{R}^{s}\right)$ are given by

$$
\begin{aligned}
\|f\|_{p, m} & =\left[\sum_{|k| \leqslant m}\left\|D^{k} f\right\|_{p}^{p}\right]^{1: p} \\
|f|_{p, n} & =\left[\sum_{|k|=n}\left\|D^{k} f\right\|_{p}^{p}\right]^{1: p} \quad(0 \leqslant n \leqslant m)
\end{aligned}
$$

with the usual extension for the case $p=\infty$. The moduli of continuity are defined as follows (cf. [4]): if $f \in L_{p}\left(\mathbb{R}^{s}\right), t>0, r \in \mathbb{Z}_{+}$, then

$$
\omega_{r}(t, f)=\sup \left\{\left\|\Delta^{r}(z) f\right\|_{p}:|z| \leqslant t\right\}
$$

where

$$
\left(\Delta^{r}(z) f\right)(x)=\sum_{n=0}^{r}(-1)^{r-n}\binom{r}{n} f(x+n z), \quad x, z \in \mathbb{R}^{s}
$$

if $f \in W_{p}^{m}\left(\mathbb{R}^{s}\right)$ then

$$
\omega_{r}\left(t, \mathbb{D}^{m} f\right)=\left[\sum_{|k|=m} \omega_{r}\left(t, D^{k} f\right)^{p}\right]^{1 F}
$$

1.3. Mesh

Let us now define the mesh on \mathbb{R}^{s} and some spaces of mesh functions. Let $H \subset \mathbb{R}_{+}^{s}$ be a bounded set of parameters with 0 as a point of density. For fixed $h \in H$, the mesh on \mathbb{R}^{s} is the set

$$
\mathbb{R}_{h}^{s}=\left\{x \in \mathbb{R}^{s}: x=l 0 h, l \in \mathbb{Z}^{s}\right\} .
$$

The space of all functions $u: \mathbb{R}_{h}^{s} \rightarrow A$ (where A is a linear space) is denoted by $m\left(\mathbb{R}_{h}^{s}, A\right), m\left(\mathbb{R}_{h}^{s}\right)=m\left(\mathbb{R}_{h}^{s}, \mathbb{R}\right)$. The set of mesh functions vanishing out of a finite set is denoted by $m\left(\mathbb{R}_{h}^{s}, A\right)_{b}$. The operators of finite differences, a^{k} and $\partial^{k}\left(k \in \mathbb{Z}_{+}^{s}\right)$, are defined in the following way: if $u \in m\left(\mathbb{R}_{h}^{s}, A\right), x \in \mathbb{R}_{h}^{s}$, then

$$
\begin{aligned}
& \partial^{k} u(x)=h^{-k} \sum_{0 \leqslant j \leqslant k}(-e)^{k-j}\binom{k}{j} u(x+j \circ h), \\
& \partial^{k} u(x)=h^{-k} \sum_{0 \leqslant j \leqslant k}(-e)^{k-j}\binom{k}{j} u(x-j \circ h)
\end{aligned}
$$

The following spaces of mesh functions are considered:
$L_{p}\left(\mathbb{R}_{h}^{s}\right)$-the set of all $u \in m\left(\mathbb{R}_{h}^{s}\right)$ such that the number

$$
\|u\|_{p}=\left[h^{e} \sum_{x \in \mathbb{R}_{h}^{s}}|u(x)|^{p}\right]^{1 ; p}
$$

is finite; $\|\cdot\|_{p}$ is the norm in $L_{p}\left(\mathbb{R}_{h}^{s}\right)$;
$W_{p}^{m}\left(\mathbb{R}_{h}^{s}\right)\left(m \in \mathbb{Z}_{+}\right)$-the set $L_{p}\left(\mathbb{R}_{h}^{s}\right)$ with the norm and seminorms

$$
\begin{aligned}
\|u\|_{p, m} & =\left[\sum_{|k| \leqslant m}\left\|\partial^{k} u\right\|_{p}^{p}\right]^{1 p} ; \\
|u|_{p, n} & =\left[\sum_{|k|=n}\left\|\partial^{k} u\right\|_{p}^{p}\right]^{1, p} \quad(0 \leqslant n \leqslant m) .
\end{aligned}
$$

1.4. Box Splines

In this section, box spline functions, which will be used to construct an approximation of $W_{p}^{m}\left(\mathbb{R}^{s}\right)$, are defined. As in [3], let $X=\left\{x^{1}, \ldots, x^{n}\right\}$ be a set of vectors from \mathbb{R}^{s} (not necessarily distinct), let

$$
\langle X\rangle=\operatorname{span} X=\mathbb{R}^{s},
$$

and let the number $d(X)$ be defined by

$$
d(X)=\max \left\{m: \text { for all } Y \subset X,|Y|=m \text { implies }\langle X \backslash Y\rangle=\mathbb{R}^{s}\right\}
$$

(where $|Y|$ is the cardinality of Y). The multivariate box spline B_{X} is the function satisfying the identity

$$
\begin{equation*}
\int_{\mathbb{R}^{s}} B_{X}(x) f(x) d x=\int_{I^{n}} f(X z) d z \quad(\text { where } I=[0,1]) \tag{1.4}
\end{equation*}
$$

for every $f \in C\left(\mathbb{R}^{s}\right)\left(X\right.$ is identified with the matrix $\left.\left[x^{1}, \ldots, x^{n}\right]\right)$.
We use the following matrices in our study:

$$
E_{k}=[\underbrace{e_{1}, \ldots, e_{1}}_{k_{1}}, \underbrace{e_{2}, \ldots, e_{2}}_{k_{2}}, \ldots, \underbrace{e_{s}, \ldots, e_{s}}_{k_{s}}] \quad\left(k \in \mathbb{Z}_{+}^{s}\right) .
$$

For the purpose of constructing an approximation of the space $W_{p}^{m}\left(\mathbb{R}^{s}\right)$, we introduce the following classes of matrices:

$$
\mathscr{S}_{m}=\left\{X \subset \mathbb{Z}^{s}: E_{m e} \subset X, d(X) \geqslant m\right\} \quad\left(m \in \mathbb{Z}_{+}\right) .
$$

Let us observe that $\mathscr{S}_{0}=\left\{X \subset \mathbb{Z}^{s}:\langle X\rangle=\mathbb{R}^{s}\right\}$ and if $m>0$ then the matrix $X \backslash E_{m e}$ (consisting of an arbitrary number of columns) has at least one nonzero element in each row. As an example, the functions $\mu_{(m)}$ and $\pi_{(m+1)}$, used by Aubin [1] to build an approximation of $H^{m}\left(\mathbb{R}^{s}\right)$, are box splines generated by the matrices $E_{m e} \cup e$ and $E_{(m+1) e}=E_{m e} \cup E_{e}$, respectively. These matrices belong to \mathscr{S}_{m}.

It follows from the results presented by Dahmen and Micchelli in [3] that B_{X} belongs to $C^{d(X)-1}\left(\mathbb{R}^{s}\right)$. In the same way it can be proved that

$$
\begin{equation*}
B_{X} \in W_{\infty}^{d_{1} X}\left(\mathbb{R}^{s}\right)_{b} . \tag{1.5}
\end{equation*}
$$

2. Formulation of Results

In this section an approximation of $L_{p}\left(\mathbb{R}^{s}\right)$ and $W_{p}^{m}\left(\mathbb{R}^{s}\right)$ is constructed. In Section 2.1 the operators of restriction and prolongation which satisfy conditions (1.1) and (1.2) if $X=L_{p}\left(\mathbb{R}^{s}\right)$ are constructed. In the next section the box splines are applied to the construction of an approximation of $W_{p}^{m}\left(\mathbb{R}^{s}\right)$, Section 2.3 contains the conditions for stability of the approximation. Last, in Section 2.4 an example of an application of the approximation is presented.

2.1. Approximation of $L_{F}\left(\mathbb{R}^{s}\right)$

Let A and B be functions from $L_{\infty}\left(\mathbb{R}^{s}\right)_{b}$ and let us define the operators $p_{h}^{B}: m\left(\mathbb{R}_{h}^{s}\right) \rightarrow L_{x}\left(\mathbb{R}^{s}\right)^{\text {loc }}, r_{h}^{A}: L_{1}\left(\mathbb{R}^{s}\right)^{\text {loc }} \rightarrow m\left(\mathbb{R}_{h}^{s}\right)$ by the formulas

$$
\begin{equation*}
\left(p_{h}^{B} u\right)(x)=\sum_{l \in \mathbb{Z}^{S}} B(x / h-l) u(l \circ h) \tag{2.1}
\end{equation*}
$$

for each $u \in m\left(\mathbb{R}_{h}^{s}\right)$ and almost every $x \in \mathbb{R}^{s}$:

$$
\begin{equation*}
\left(r_{h}^{A} f\right)(l \circ h)=h^{-e} \int_{\mathbb{R}^{x}} A(x / h-l) f(x) d x \tag{2,2}
\end{equation*}
$$

for each $f \in L_{1}\left(\mathbb{R}^{s}\right)^{\text {loc }}, l \in \mathbb{Z}^{s}$.
Theorem 1. Let $A, B \in L_{x}\left(\mathbb{R}^{s}\right)_{b}, 1 \leqslant p \leqslant x$. If $f \in L_{p}\left(\mathbb{R}^{s}\right)$ then $r_{h}^{A} f \in L_{p}\left(\mathbb{R}_{h}^{s}\right)$; if $u \in L_{p}\left(\mathbb{R}_{h}^{s}\right)$ then $p_{h}^{B} u \in L_{p}\left(\mathbb{R}^{s}\right)$, and

$$
\begin{equation*}
\left\|r_{h}^{A} f\right\|_{p} \leqslant C_{1}\|f\|_{p}, \quad\left\|p_{h}^{B} u\right\|_{p} \leqslant C_{2}\|u\|_{p} \tag{12.3}
\end{equation*}
$$

Thus, condition (1.1) from the definition of the approximation is fulfilled. To obtain the convergence, we need more assumptions concerning the functions A, B. Let us define the sets

$$
\begin{aligned}
& \mathscr{P}_{i}=\left\{A \in L_{\infty}\left(\mathbb{R}^{s}\right)_{b}: \int A(x) d x=1\right\} \\
& \mathscr{P}_{d}=\left\{B \in L_{\infty}\left(\mathbb{R}^{s}\right)_{b}: \sum_{l \in \mathbb{Z}^{s}} B(x+l)=1 \text { for almost every } x \in \mathbb{R}^{s}\right\}
\end{aligned}
$$

If $A \in \mathscr{P}_{i}, B \in \mathscr{P}_{d}$, then $p_{h}^{B} 1=1, r_{h}^{A} 1=1$, and therefore the elements of \mathscr{P}_{d} and \mathscr{P}_{1} are called the discrete and integral partitions of unity. It is shown in Section 3.5 that

$$
\begin{equation*}
\mathscr{P}_{d} \subset \mathscr{P}_{i} \tag{2.4}
\end{equation*}
$$

As an example of a function from \mathscr{P}_{d}, a box spline can be taken, since (as follows from the Corollary to Proposition 3 in [2])

$$
\begin{equation*}
\text { if } X \in \mathscr{F}_{0} \text { then } B_{X} \in \mathscr{P}_{d} \tag{2.5}
\end{equation*}
$$

Theorem 2. Let $A \in \mathscr{P}_{i}, B \in \mathscr{P}_{d}$. If $f \in L_{p}\left(\mathbb{R}^{s}\right), 1 \leqslant p \leqslant \infty$, then

$$
\begin{equation*}
\left\|f-p_{h}^{B} r_{h}^{A} f\right\|_{p} \leqslant C_{3} \omega_{1}\left(\left.|h|\right|_{\propto}, f\right) \tag{2.6}
\end{equation*}
$$

if, moreorer,

$$
p_{h}^{B} r_{h}^{A} g=g \quad \forall g \in \Pi_{\cdot}\left(\mathbb{R}^{s}\right)
$$

(where $\Pi_{r}\left(\mathbb{R}^{s}\right)$ is the set of all polynomials of degree not greater than r), then

$$
\begin{equation*}
\left\|f-p_{h}^{B} r_{h}^{A} f\right\|_{p} \leqslant C_{4} \omega_{r+1}\left(|h|_{\infty}, f\right) \tag{2.8}
\end{equation*}
$$

It is shown in Lemma 3 that there exist functions A and B satisfying condition (2.7).

2.2. Approximation of $W_{p}^{m}\left(\mathbb{R}^{s}\right)$

The construction of the approximation of $W_{p}^{m}\left(\mathbb{R}^{s}\right)$ is done with box splines. If $X \in \mathscr{S}_{m}$ then, following properties (1.5) and (2.5), $B_{X} \in \mathscr{P}_{d}$ and $p^{B_{x}} u \in W_{x}^{m}\left(\mathbb{R}^{s}\right)$. The following notation will be used:

$$
\begin{gather*}
\text { if } X \in \mathscr{S}_{0} \text { then } p_{h}^{X}=p_{h}^{B_{X}} ; \\
\text { if } X=E_{k} \cup Y \text { then } B_{k . Y}=B_{X}, p_{h}^{k, Y}=p_{h}^{B_{X}} . \tag{2.9}
\end{gather*}
$$

Let us now formulate two lemmas which allow us to build an approximation of $W_{p}^{m}\left(\mathbb{R}^{s}\right)$.

Lemma 1. Let $j, k \in \mathbb{Z}_{+}^{s}, j \leqslant k$. If Y is a matrix such that $E_{k-j} \cup Y \in \mathscr{S}_{0}$ then for every $u \in m\left(\mathbb{R}_{h}^{s}\right)$

$$
\begin{equation*}
D^{j} p_{h}^{k . Y} u=(-1)^{|j|} p_{h}^{k-j, Y} \partial_{-}^{j} u \tag{2.10}
\end{equation*}
$$

Lemma 2. Let $A \in L_{\alpha_{c}}\left(\mathbb{R}^{s}\right)_{b}, k \in \mathbb{Z}_{+}^{s},|k|=n \leqslant m$. Then for every function $f \in W_{1}^{m}\left(\mathbb{R}^{s}\right)^{\text {loc }}$

$$
\begin{equation*}
\partial^{k} r_{h}^{A} f=r_{h}^{A(k)} D^{k} f, \quad \partial_{-}^{k} r_{h}^{A} f=(-1)^{n} r_{h}^{A(-k)} D^{k} f \tag{2.11}
\end{equation*}
$$

where $A(k)=Q_{e}^{k} A, A(-k)=Q_{-e}^{k} A$, and

$$
\begin{equation*}
\left(Q_{z}^{k} f\right)(x)=\int_{I^{n}} f\left(x-z \circ E_{k} y\right) d y \quad(I=[0,1]) \tag{2.12}
\end{equation*}
$$

for every $f \in L_{1}\left(\mathbb{R}^{s}\right)^{\mathrm{loc}}, z \in \mathbb{R}^{s}$.
The following theorem is a consequence of Theorems 1,2 and Lemmas $1,2$.

Theorem 3. Let $X \in \mathscr{S}_{m}, A \in \mathscr{P}_{i}$. If $f \in W_{p}^{m}\left(\mathbb{R}^{s}\right)$ then $r_{h}^{A} f \in W_{p}^{m}\left(\mathbb{R}_{h}^{s}\right)$; if $u \in W_{p}^{m}\left(\mathbb{R}_{h}^{s}\right)$ then $p_{h}^{X} u \in W_{p}^{m}\left(\mathbb{R}^{s}\right)$ and

$$
\begin{gather*}
\left|r_{h}^{A} f\right|_{p, n} \leqslant C_{1}|f|_{p, n}, \quad\left|p_{h}^{X} u\right|_{p, n} \leqslant|u|_{p, n} \tag{2.13}\\
\left|f-p_{h}^{X} r_{h}^{A} f\right|_{p, n} \leqslant C_{5} \omega_{1}\left(|h|, \mathbb{D}^{n} f\right) \quad(0 \leqslant n \leqslant m) \tag{2.14}
\end{gather*}
$$

If, moreover, condition (2.7) is satisfied with $r \geqslant m$ then

$$
\begin{equation*}
\left|f-p_{h}^{X} r_{h}^{A} f\right|_{p, n} \leqslant C_{6} \omega_{r+1-n}\left(|h|, \mathbb{D}^{n} f\right) \quad(0 \leqslant n \leqslant m) \tag{2.15}
\end{equation*}
$$

The application of box splines allows us to obtain an approximation satisfying condition (2.7). The following lemma is true

Lemma 3. If $X \in \mathscr{S}_{r}, G \in \mathscr{P}_{1}$, then there exist real numbers $\zeta_{k}(|k| \leqslant y$ such that if $A(x)=\sum_{|k| \leqslant r} \bar{\zeta}_{k} G(x-k)$ for almost everg $x \in \mathbb{R}^{s}$, then cordition (2.7) is satisfied.

2.3. Stability of the Approximation

In this section the stability of the approximation is investigated. Theorem 4 gives conditions which are equivalent to stability condition (1.3). The corollary estimates the norm of $p_{h}^{X} u$ by the norms of lower degree.

Theorem 4. Let $X \in \mathscr{S}_{m}, m \geqslant 0,1 \leqslant p \leqslant \infty$. The following conditions are equivalent:

$$
\begin{align*}
& \mid \text { det } Y \mid \leqslant 1 \text { for such each } Y \subset X \text { such that }|Y|=s \text { : } \\
& \text { there exists } A \in \mathscr{P}_{t} \text { such that } r_{h}^{A} p_{h}^{X} u=u \text { for each } u \in m\left(\mathbb{R}_{h}^{s}\right) \text {; } \\
& \text { there exists a constant } K>0 \text { such that }\left\|p_{h}^{X} u\right\|_{p, m} \geqslant K\|u\|_{p, m} \\
& \text { for each } h \in H \text { and every } u \in W_{p}^{m}\left(\mathbb{R}_{h}^{s}\right) \text {. } \tag{2.18}
\end{align*}
$$

Coroleary. Let $X \in \mathscr{S}_{m}, m>0,1 \leqslant p \leqslant \infty$. If conditions (2.16)-(2.18 are satisfied then there exists $C>0$ such that for each $u \in W_{p}^{m}\left(\mathbb{R}_{h}^{s}\right)$,

$$
\begin{equation*}
\left\|p_{h}^{X} u\right\|_{p, m} \leqslant C|e / h|^{m-n}\left\|p_{h}^{X} u\right\|_{p, n} \quad \text { if } \quad 0 \leqslant n<m \tag{2.19}
\end{equation*}
$$

2.4. Example of Application

Let us consider the bilinear from, defined on the space $X=H_{\mathrm{e}}^{1}\left([0.1]^{2}\right)$ $=\mathscr{W}_{2}^{1}\left(I^{2}\right)$,

$$
a(f, g)=\sum_{i, j=1}^{2}\left\langle b_{i j} D_{i} f, D_{j} g\right\rangle+\langle b f, g\rangle \quad \forall f, g \in X,
$$

where $b_{i j}, b$ are sufficiently smooth functions defined on \mathbb{R}^{2} and

$$
\langle f, g\rangle=\int f(x) g(x) d x \quad \text { for } \quad f, g \in L_{2}\left(I^{2}\right)
$$

Let a be X-elliptic and let us consider the eigenvalue problem (2.20)

$$
\begin{align*}
& \text { find } \lambda \in \mathbb{R} \text { and } f \in X \backslash\{0\} \text { such that } \\
& a(f, g)=\lambda\langle f, g\rangle \quad \forall g \in X . \tag{2,20}
\end{align*}
$$

Let us consider a space F and a continuous linear injection $\psi: X \rightarrow F$. An external approximation of X is the system $\mathscr{A}(X, p, r, F, \psi)=$ $\left\{\left(X_{h}, p_{h}, r_{h}\right)\right\}_{h \in H}$, where $p_{h}: X_{h} \rightarrow F$ and $r_{h}: X \rightarrow X_{h}$ are uniformly bounded linear operators (cf. (1.1)) and

$$
\forall f \in X \quad \lim _{h \rightarrow 0}\left\|\psi f-p_{h} r_{h} f\right\|_{F}=0 .
$$

Let the parameter $h \in H$ be fixed and let us consider the bilinear form introduced by Aubin [1],

$$
\begin{equation*}
a_{h}(u, v)=\bar{a}\left(p_{h} u, p_{h} v\right) \quad \forall u, v \in X_{h}, \tag{2.21}
\end{equation*}
$$

where \bar{a} is an extension of a onto the space F, that is,

$$
\bar{a}(\psi f, \psi g)=a(f, g) \quad \forall f, g \in X
$$

The approximate eigenvalue problem is stated as follows:

$$
\begin{align*}
& \text { find } \lambda_{h} \in \mathbb{R} \text { and } u \in X_{h} \backslash\{0\} \text { such that } \\
& a_{h}(u, v)=\lambda_{h}[u . v] \quad \forall v \in X_{h} \tag{2.22}
\end{align*}
$$

(where $[u, v]=h^{e} \sum_{l \in \bar{z}^{s}} u(l \circ h) v(l \circ h)$). This problem (in a more general formulation) was considered by Reginska [5], who proved the convergence of the solutions of (2.22) to the solutions of (2.20). One of the assumptions made in [5] is that the approximation satisfies the additional condition
for every $h \in H$ there exists a subspace $V_{h} \subset X$ which is complementary to the null space of r_{h} and

$$
\begin{equation*}
\varepsilon_{h}=\sup \left\{\left\|\psi f-p_{h} r_{h} f\right\|_{F}: f \in V_{h},\|f\|_{X}=1\right\} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0 . \tag{2.23}
\end{equation*}
$$

Reginska [6] proved that condition (2.23) is satisfied iff

$$
\begin{align*}
& \text { for every } h \in H \text { there exists an operator } q_{h}: X_{h} \rightarrow X \text { such } \\
& \text { that } r_{h} q_{h} u=u \text { for each } u \in X_{h} \text { and } \\
& \varepsilon_{h}^{\prime}=\sup \left\{\left\|p_{h} u-\psi q_{h} u\right\|_{F}: u \in X_{h},\|u\|_{h}=1\right\} \rightarrow 0 \quad \text { as } h \rightarrow 0 . \tag{2.24}
\end{align*}
$$

Now, let us build an approximation of X. As in [1] and [6], let $F=L_{2}\left(I^{2}\right) \times L_{2}\left(I^{2}, D_{1}\right) \times L_{2}\left(I^{2}, D_{2}\right), \quad$ where $\quad L_{2}\left(\Omega, D_{i}\right) \quad$ is the space $\left\{f \in L_{2}(\Omega): D_{i} f \in L_{2}(\Omega)\right\}$, normed by $\|f\|_{(i)}^{2}=\|f\|_{2}^{2}+\left\|D_{i} f\right\|_{2}^{2}$, and let $\psi f=(f, f, f)$ for $f \in X$.

Let $H=\{(1 / n, 1 / n)\}_{n=2}^{\infty}$; we will write h instead of (h, h). Let X, Y, Z be matrices from \mathscr{S}_{0} such that $B_{Y} \in L_{\infty}\left(\mathbb{R}^{2}, D_{1}\right) . B_{Z} \in L_{x}\left(\mathbb{R}^{2}, D_{2}\right)$; let
$N=\operatorname{supp} B_{X} \cup \operatorname{supp} B_{Y} \cup \operatorname{supp} B_{Z}$, and $I_{h}^{2}=\left\{h: l \in \mathbb{Z}^{2}, h+N h \in I^{2}\right\}$. Let $X_{h}=\left\{u \in m\left(\mathbb{R}_{h}^{2}\right): u(l h)=0\right.$ if $\left.l \notin I_{h}^{2}\right\}$, and

$$
p u=\left(p^{x} u, p^{Y} u, p^{Z} u\right) \|_{I^{2}}
$$

where p^{X}, p^{Y}, p^{Z} are the prolongation operators defined by (2.9) and (2.1) (the subscript " h " is suppressed). Further, let A be a function from \mathscr{F}_{i}, and let

$$
\begin{equation*}
(r g)(l h)=\left(r^{A} \tilde{g}\right)(l h) \text { if } l h \in I_{h}^{2}, \quad(r g)(l h)=0 \text { if } l h \notin I_{h}^{2} \tag{226}
\end{equation*}
$$

where \tilde{g} is the function from $W_{2}^{1}\left(\mathbb{R}^{2}\right)$ defined by

$$
\tilde{g}(x)=g(x) \text { if } x \in I^{2}, \quad \tilde{g}(x)=0 \text { if } x \notin I^{2}
$$

It follows from the results presented in Sections 2.1 and 2.2 and from the results of Aubin [1] concerning the approximation on subsets of \mathbb{R}^{2} that $\mathscr{A}(X, p, r, F, \psi)$ is an external approximation of X.

Let us investigate the approximations generated by different matrices X, Y, Z. Reginska proved in [6] that the choice proposed by Aubin [1], $X=\left[e_{1}, e_{2}\right], Y=\left[e_{1}, e_{1}, e_{2}\right], Z=\left[e_{1}, e_{2}, e_{2}\right]$, does not satisfy condition (2.24). However, the following result is true.

Lemma 4. Let us assume that $X \in \mathscr{S}_{0}$ and that Y belongs to \mathscr{H}_{1} and satisfies condition (2.16). Let $Z=Y$. Then there exists a function $A \in \mathscr{Z}_{i}$ such that the approximation (2.25)-(2.26) fulfills (2.24).

Let us now construct the approximate problem. Let the approximate bilinear form be defined by (2.21) with

$$
\begin{equation*}
\bar{a}(\bar{f}, \bar{g})=\sum_{i, j=1}^{2}\left\langle b_{i j} D_{i} f_{i}, D_{j} g_{j}\right\rangle+\left\langle b f_{0}, g_{0}\right\rangle \tag{2.27}
\end{equation*}
$$

if $\bar{f}=\left(f_{0}, f_{1}, f_{2}\right), \bar{g}=\left(g_{0}, g_{1}, g_{2}\right) \in F$. It is proved in Section 3.7 that

$$
a_{h}(u, v)=-\sum_{i, l=1}^{2}\left[\hat{c}_{j} r^{Y(i)} b_{i j} p^{Y(i)} a_{i}^{--} u+v^{x} b p^{x} u, i\right],
$$

where $Y(i)=Y^{\prime}, e_{i}, \partial_{i}=\hat{c}^{e_{i}},{\hat{c_{i}}}_{i}^{-}=-\hat{c}_{-}^{c_{t}}$. Thus, if $Y=\left[e_{1}, e_{2}, e\right], X=$ [$\left.e_{1}, e_{2}\right]$, then we obtain the difference scheme

$$
-\sum_{i=1}^{2}\left[\hat{\partial}_{i} \beta_{i i} \partial_{i}^{-}+\partial_{3-i}\left(t_{i} \beta_{i, 3-i}^{i}\right) \hat{c}_{i}+\hat{c}_{i}^{-} \beta_{3-i, i}^{i} \hat{\partial}_{3-i}^{-}\right] u+\beta_{0} u=\lambda_{k i} u
$$

where

$$
\begin{aligned}
\beta_{i i}(l h)= & \int_{A_{i}} b_{i i}(l h+\xi h) d \xi \\
& A_{i}=\left\{\left(x_{1}, x_{2}\right): 0<x_{i}<1, x_{i}<x_{3-i}<1+x_{i}\right\}, \\
\beta_{i j}^{k}(l h)= & \int_{B_{k}} b_{i j}(l h+\xi h) d \xi \\
& B_{k}=\left\{\left(x_{1}, x_{2}\right): 0<x_{3-k}<x_{k}<1\right\} \\
\beta_{0}(l h)= & \int_{I^{2}} b_{0}(l h+\xi h) d \xi \\
& t_{i} u(l h)=u\left(l h+e_{i} h\right)
\end{aligned}
$$

($i, j, k=1,2, l \in \mathbb{Z}^{2}$). This scheme is based on seven points; for any other choice of Y the scheme connects more points.

3. Proofs

In this section all the results are proved. First, some definitions are introduced which will be used in the proof. Section 3.2 contains some auxiliary formulas, and in the next sections all the lemmas and theorems are proved.

3.1. Definitions

First, if f, g are measurable functions on \mathbb{R}^{s} then

$$
\langle f, g\rangle=\int_{\mathbb{R}^{s}} f(x) g(x) d x
$$

(if the integral is well defined).
The operators of translation, T_{z}, difference, S_{z}^{k}, and multiplication of the argument, $M_{y}\left(z \in \mathbb{R}^{s}, y \in \mathbb{R}_{+}^{s}, k \in \mathbb{Z}_{+}^{s}\right)$, are defined as follows. If $f \in L_{1}\left(\mathbb{R}^{s}\right)^{\text {loc }}, x \in \mathbb{R}^{s}$, then

$$
\begin{gather*}
\left(T_{z} f\right)(x)=f(x+z), \quad\left(M_{y} f\right)(x)=f(x=y) \\
S_{z}^{k} f=\sum_{0 \leqslant j \leqslant k}(-e)^{k-j}\binom{k}{j} T_{j, z} f \tag{3.1}
\end{gather*}
$$

The following power functions are used:

$$
c_{k}(x)=x^{k} / k!\quad \text { for } \quad x \in \mathbb{R}^{s}, k \in \mathbb{Z}_{+}^{s} .
$$

If X is a linear topological space, $u \in m\left(\mathbb{R}_{h}^{s}\right), v \in m\left(\mathbb{R}_{h}^{s}, X\right)$, then

$$
[u, v]=h^{e} \sum_{l \in \mathbb{z}^{5}} u(l \circ h) c(l=h),
$$

provided that the series is convergent in the topology of X.
Let $A \in L_{\infty}\left(\mathbb{R}^{s}\right)_{b}$. We define the function $v_{h}^{A}: \mathbb{R}_{h}^{s} \rightarrow L_{\infty}\left(\mathbb{R}^{s}\right)_{h}$ by

$$
\begin{align*}
& v_{h}^{A}(l \circ h)=h^{-e} T_{-\ln } M_{e, h} A \text { for each } i \in \mathbb{Z}^{c} . \\
& \text { that is, }\left(v_{h}^{A}(l \circ h)\right)(x)=h^{-e} A(x / h-i) .
\end{align*}
$$

Using these definitions, we can represent r_{h}^{4} and p_{h}^{B} in the form

$$
\begin{gather*}
\left(r_{h}^{A} f\right)(l \circ h)=\left\langle v_{h}^{A}(l \circ h), f\right\rangle \quad \text { or } \quad r_{h}^{A} f=\left\langle v_{h}^{A}, f\right\rangle ; \tag{3.3}\\
p_{h}^{B} u=\left[u, v_{h}^{B}\right] . \tag{3.4}
\end{gather*}
$$

Similarly to definition (2.9), if $X \in \mathscr{S}_{0}$ then we write v_{h}^{X} instead of $v_{h}^{B_{7} ; \text {; }}$; $X=E_{k} \cup Y$ then $v_{h}^{k, \gamma}=v_{h}^{B x}$.

Finally, let $A, B \in L_{x}\left(\mathbb{R}^{s}\right)_{b}$ and let us define the function $W_{A B}$ by the formula

$$
\begin{equation*}
W_{A B}(x, z)=\sum_{l \in \mathbb{Z}} A(x+z-l) B(x-l), \quad x, z \in \mathbb{R}^{3} . \tag{3.5}
\end{equation*}
$$

3.2. Auxiliary Formulas

Let us start from the following properties of box splines, which follow from formulas (2.7) and (2.10) in [2]:

$$
\begin{array}{ll}
D^{j} B_{k, Y}=(-1)^{1 / i} S_{-e}^{j} B_{k-j . Y} & \text { if } j, k \in \mathbb{Z}_{+}^{s}, j \leqslant k, E_{k-j} \cup Y \in \mathscr{S}_{0} ; \\
B_{j+k, Y}=Q_{e}^{j} B_{k, Y} & \text { if } j, k \in \mathbb{Z}_{+}^{s}, E_{k} \cup Y \in \mathscr{G}_{0} . \tag{3.7}
\end{array}
$$

The following property of the moduli of continuity, which is taken from [4]. will also be used in the proof: there exist positive constants M_{1}, M_{2} (depending on p, r) such that for every function $f \in L_{p}\left(\mathbb{R}^{s}\right)$

$$
\begin{equation*}
M_{1} \omega_{r}(t, f) \leqslant K_{r}\left(t^{r}, f\right) \leqslant M_{2} \omega_{r}(t, f) \tag{3.8}
\end{equation*}
$$

where $K_{r}(t, f)=\inf \left\{\|f-g\|_{p}+t|g|_{p, r}: g \in H_{p}^{r}\left(\mathbb{R}^{s}\right)\right\}$, and $H_{p}^{r}\left(\mathbb{R}^{s}\right)=W_{p}^{r}\left\{\mathbb{R}^{s}\right\}$ if $p<\infty, H_{x}^{r}\left(\mathbb{R}^{s}\right)=C^{r}\left(\mathbb{R}^{s}\right)$.
Now, let us give some formulas which can be proved easily. If $f \in L_{1}\left(\mathbb{R}^{s}\right)^{\text {loc }}$ and $g \in L_{x}\left(\mathbb{R}^{s}\right)_{b}$ or $f \in L_{p}\left(\mathbb{R}^{s}\right)$ and $g \in L_{p}\left(\mathbb{R}^{s}\right), 1 ; p+1 / p^{\prime}=1$, then

$$
\begin{equation*}
\left\langle S_{z}^{k} f, g\right\rangle=\left\langle f, S_{-=}^{k} g\right\rangle, \quad\left\langle Q_{=}^{k} f: g\right\rangle=\left\langle f, Q_{-=}^{k} g\right\rangle \tag{3,9}
\end{equation*}
$$

(the operator $Q_{=}^{k}$ is defined by (2.12)).

If $f \in L_{1}\left(\mathbb{R}^{s}\right)^{\text {loc }}$ then

$$
\begin{equation*}
T_{z} M_{y} f=M_{y} T_{z=y} f, \quad Q_{z}^{k} M_{y} f=M_{y} Q_{y=z}^{k} f, \quad T_{z} Q_{y}^{k} f=Q_{y}^{k} T_{z} f \tag{3.10}
\end{equation*}
$$

if $f \in W_{1}^{m}\left(\mathbb{R}^{s}\right)^{\text {loc }},|k| \leqslant m$, then

$$
\begin{equation*}
D^{k} M_{y} f=y^{k} M_{y} D^{k} f, \quad D^{k} T_{z} f=T_{z} D^{k} f, \quad S_{y}^{k} f=y^{k} Q_{-y}^{k} D^{k} f \tag{3.11}
\end{equation*}
$$

Next,

$$
\begin{gather*}
c_{k}(x+y)=\sum_{0 \leqslant j \leqslant k} c_{k-j}(x) c_{j}(y), \quad c_{k}(x \circ y)=x^{k} c_{k}(y) \tag{3.12}\\
D^{j} c_{k}=c_{k-j} \text { if } 0 \leqslant j \leqslant k, \quad D^{j} c_{k}=0 \text { for other vectors } j \in \mathbb{Z}_{+}^{s} . \tag{3.13}
\end{gather*}
$$

If $u \in m\left(\mathbb{R}_{h}^{s}\right)$ and $v \in m\left(\mathbb{R}_{h}^{s}, X\right)_{b}$ or $u \in L_{p}\left(\mathbb{R}_{h}^{s}\right)$ and $v \in L_{p}\left(\mathbb{R}_{h}^{s}\right)$, then

$$
\begin{equation*}
\left[u, \partial^{k} v\right]=\left[\partial_{-}^{k} u, v\right] \tag{3.14}
\end{equation*}
$$

If $A \in L_{\infty}\left(\mathbb{R}^{s}\right)_{b}, k \in \mathbb{Z}_{+}^{s}$, then

$$
\begin{equation*}
S_{h}^{k} v_{h}^{A}=h^{k} \partial_{-}^{k} v_{h}^{A}, \quad S_{-h}^{k} v_{h}^{A}=h^{k} \partial^{k} v_{h}^{A} \tag{3.15}
\end{equation*}
$$

(that is, for each $x \in \mathbb{R}^{s}, S_{h}^{k}\left(v_{h}^{A}(x)\right)=h^{k}\left(\partial^{k} v_{h}^{A}\right)(x)$).
Now, let us give several formulas which will be proved in the next section. If $A, B \in L_{\infty}\left(\mathbb{R}^{s}\right)_{b}, k \in \mathbb{Z}_{+}^{s}, u \in m\left(\mathbb{R}_{h}^{s}\right), f \in L_{1}\left(\mathbb{R}^{s}\right)^{\text {loc }}$, then

$$
\begin{gather*}
S_{h}^{k} p_{h}^{B} u=h^{k} p_{h}^{B} \partial^{k} u \tag{3.16}\\
\partial^{k} r_{h}^{A} f=h^{-k} r_{h}^{A} S_{h}^{k} f, \quad \partial_{-}^{k} r_{h}^{A} f=h^{-k} r_{h}^{A} S_{-h}^{k} f \tag{3.17}
\end{gather*}
$$

If $j, k \in \mathbb{Z}_{+}^{s}, E_{k} \cup Y \in \mathscr{S}_{0}, u \in m\left(\mathbb{R}_{h}^{s}\right)$, then

$$
\begin{equation*}
p_{h}^{i+k, Y_{u}} u=Q_{h}^{j}\left(p_{h}^{k .} Y_{u}\right) \tag{3.18}
\end{equation*}
$$

If $A \in L_{x}\left(\mathbb{R}^{s}\right)_{b}, k \in \mathbb{Z}_{+}^{s}$, then

$$
\begin{equation*}
r_{h}^{A} c_{k}=\sum_{0 \leqslant j \leqslant k} \alpha_{j}^{A} h^{j} c_{k-j}, \quad \alpha_{j}^{A}=\left\langle A, c_{j}\right\rangle ; \tag{3.19}
\end{equation*}
$$

if $X \in \mathscr{S}_{m}, k \in \mathbb{Z}_{+}^{s},|k| \leqslant m$ then

$$
\begin{equation*}
p_{h}^{X} c_{k}=\sum_{0 \leqslant j \leqslant k} \beta_{j}^{X} h^{j} c_{k-j}, \quad \beta_{j}^{X}=\sum_{l \in \mathbb{Z}^{j}} B_{X}(-l) c_{j}(l) \tag{3.20}
\end{equation*}
$$

3.3. Proofs of Auxiliary Formulas

Below, the parameter h is fixed, and hence the subscript " h " is suppressed.

Proof of Formula (3.16). Following definition (3.1) and formulas (3.4). (3.15), (3.14), we have

$$
\begin{aligned}
S_{h}^{k} p^{B} u & =\left[S_{h}^{k} v^{B}, u\right]=h^{k}\left[\hat{c}^{k}-v^{B}, u\right] \\
& =h^{k}\left[v^{B}, \partial^{k} u\right]=h^{k} p^{B} \hat{c}^{k} u .
\end{aligned}
$$

Proof of (3.17). According to (3.3), (3.15), (3.9), we have

$$
\begin{aligned}
\partial^{k} r^{A} f & =\left\langle\hat{d}^{k} v^{A}, f\right\rangle=h^{-k}\left\langle S_{-h}^{k} v^{A}, f\right\rangle \\
& =h^{-k}\left\langle v^{4}, S_{h}^{k} f\right\rangle=h^{-k_{r} A} S_{h}^{k} f ;
\end{aligned}
$$

the second formula can be proved similariy.
Proof of (2.10) and (3.18). We prove here that formula (2.10) from Lemma 1 is true, since it will be used in the next proofs. It follows from (3.2), (3.11), (3.6), (3.10), and (3.15) that

$$
\begin{aligned}
D^{j} v^{k, Y}(l \circ h) & =h^{-e} D^{j} T_{-l: h} M_{e h} B_{k, Y} \\
& =h^{-e-j} T_{-l: h} M_{e h} D^{j} B_{k, Y} \\
& =h^{-e-j}(-1)^{|/|} T_{-i h} M_{e \cdot h} S_{-e}^{\prime} B_{k-j, Y} \\
& =h^{-e-j}(-1)^{|j|} S_{-h}^{j} T_{-l, h} M_{e h} B_{k-j, Y} \\
& =(-1)^{|j|} h^{-i} S_{-h}^{j} v^{k-1, Y} \\
& =(-1)^{|j|} \partial^{j l^{k-j, Y} .}
\end{aligned}
$$

Therefore, due to (3.4) and (3.14),

$$
D^{\prime} p^{k . Y} u=(-1)^{|j|}\left[c^{j} v^{k, Y}, u\right]=(-1)^{\mid / \prime}\left[v^{k^{k} Y}, \partial_{-}^{\prime} u\right],
$$

and formula (2.10) is proved. Formula (3.18) can be obtained similarly by use of (3.2), (3.7), (3.10), and (3.4).

Proof of Formula (3.19). Introducing a new variable of integration, $y=x / h-l$, into definition (2.2), and using (3.12), we obtain

$$
\begin{aligned}
r^{A} c_{k}(l \circ h) & =\int_{\mathbb{R}^{s}} A(y) c_{k}(y \circ h+l \circ h) d y \\
& =\sum_{0 \leqslant 1 \leqslant k} c_{k-j}(l \circ h) \int_{\mathbb{R}} A(y) h^{j} c_{j}(y) d y
\end{aligned}
$$

which was to be proved.
Proof of Formula (3.20). The proof is carried out by induction with respect to m. If $m=0$ then (3.20) holds; let us thus assume that it also is
true for some $m=n-1 \geqslant 0$. Let $X \in \mathscr{S}_{n}$ and $|k| \leqslant n$; let us represent X in the form $X=E_{n e} \cup Y$. Let $1 \leqslant i \leqslant s$ and $z=e_{i}$. According to (2.10), we have

$$
\begin{equation*}
D^{=} p^{n e .} c_{c_{k}}=-p^{n e-z, Y} \partial_{-}^{z} c_{k} \tag{3.21}
\end{equation*}
$$

Let us denote k_{i} by d; using (3.12) and the formula

$$
c_{k}\left(e_{i}\right)=1 / r!\text { if } k=r e_{i}, r \in \mathbb{Z}_{+}, \quad c_{k}\left(e_{i}\right)=0 \text { for other } k,
$$

we deduce that

$$
\partial_{-}^{z} c_{k}=-\sum_{r=0}^{d-1} \frac{(-h)^{r z}}{(r+1)!} c_{k-=-r z}
$$

The matrix $E_{n e-} \cup Y$ belongs to \mathscr{S}_{m}, hence, applying the inductive assumption to the right-hand side of (3.21), we obtain

$$
D^{z} p^{n, Y} Y_{k}=\sum_{r=0}^{d-1} \frac{(-h)^{r z}}{(r+1)!} \sum_{0 \leqslant j \leqslant k-z-r z} \beta_{j}^{n e-z . Y^{j}} h^{j} c_{k-z-r z-j}
$$

Changing the variables of summation $(q=j+r z)$, we come to the formula

$$
\begin{align*}
D^{z} p^{n e, Y} c_{k} & =\sum_{0 \leqslant q \leqslant k-z} \gamma_{q=}^{n e, \gamma} h^{q} c_{k-=-q}, \tag{3.22}\\
\gamma_{q=}^{n e, Y} & =\sum_{r=0}^{q_{z}} \frac{(-1)^{r}}{(r+1)!} \beta_{q-r z}^{n e-z, Y} .
\end{align*}
$$

Formula (3.22) is true for each vector $z=e_{i}$, hence $p^{n e, Y} c_{k}$ is a polynomial of the form

$$
\begin{equation*}
p^{n e, Y} c_{k}=\sum_{0 \leqslant q \leqslant k} \varepsilon_{q k}^{n e, Y}(h) c_{k-q} \tag{3.23}
\end{equation*}
$$

Computing $D^{z} p^{n e,} Y_{c_{k}}$ from (3.23) and (3.13), and comparing the result with (3.22), we obtain the formula $\varepsilon_{q k}^{n e,} Y(h)=h^{n e} \gamma_{q z}^{n e, Y}$, from which we deduce that $\varepsilon_{q k}^{n e, Y}(h)$ does not depend on k. Thus,

$$
\begin{equation*}
p^{X} c_{k}=\sum_{0 \leqslant j \leqslant k} \beta_{j}^{X} h^{j} c_{k-j} \quad \text { if } \quad X \in \mathscr{S}_{m+1},|k| \leqslant m+1 \tag{3.24}
\end{equation*}
$$

and β_{q}^{X} can be calculated by taking $k=q$ and evaluating both sides of (3.24) at 0 with formulas (2.1) and (3.12).
3.4. Approximation of $L_{p}\left(\mathbb{R}^{s}\right)$

In this section the results from Section 2.1 are proved. All the proofs are carried out in the case $p<\infty$; the extension for the case $p=\infty$ is simple.

As in the previous section, the parameter h and the functions A, B are fixed, and hence we write p, r instead of p_{h}^{E}, r_{h}^{4}.

Proof of Theorem 1. Following the definitions of $r f$ and of the norm, we have

$$
\|r f\|_{p} \leqslant\left[h^{e(1-p)} \sum_{l \in \mathbb{E}^{*}}\left(\int|A(x / h-l)||f(x)| d x\right)^{p}\right]^{1 ; p} .
$$

Applying Hölder's inequality to the product of $|A(x / h-l)|^{2 / p}|f(x)|$ and $|A(x / h-l)|^{p^{\prime}}$, we obtain estimate (2.3) with

$$
C_{1}=\|A\|_{1}^{1 \cdot p^{\prime}}\left\|\Sigma_{A}\right\|_{\alpha_{\infty}}^{1 \cdot p}, \quad \text { where } \quad \Sigma_{F}(x)=\sum_{i \in \mathbb{Z}^{s}} \mid F(x+i) \| .
$$

The estimate for $\|p u\|_{p}$ can be obtained similarly, and

$$
C_{2}=\|B\|_{1}^{1 ; p}\left\|\Sigma_{B}\right\|_{\alpha_{\infty}}^{1 p^{p}} .
$$

Proof of Formula (2.4). If $A \in \mathscr{P}_{d}$ then

$$
\begin{aligned}
\int_{\mathbb{B}^{s}} A(x) d x & =\sum_{l \in \mathbb{Z}^{\mathrm{s}}} \int_{l+l^{\prime}} A(x) d x=\sum_{l \in \mathbb{Z}^{s}} \int_{l,} A(x+l) d x \\
& =\int_{l^{s}} \sum_{l \in \mathbb{Z}^{s}} A(x+l) d x=1
\end{aligned}
$$

(the sum commutes with the integral, since supp A is bounded), and thus $A \in \mathscr{P}_{1}$, which was to be shown.

Proof of Theorem 2. The proof consists of three parts. First, we prove formula (2.6). Next, we prove Lemma 5, which gives the estimate of $\|f-p r f\|_{p}$ in the case where $f \in \mathscr{W}_{p}^{r+1}\left(\mathbb{R}^{s}\right)$ and (2.7) is fulfilled. The third part is the proof of inequality (2.8).

Proof of Inequality (2.6). Following definitions (2.1), (2.2), and (3.5) we have

$$
\begin{equation*}
p r f(x)=\int_{\Omega} W_{A B}(x / h, z) f(x+z=h) d z \tag{3.25}
\end{equation*}
$$

where $\Omega=\operatorname{supp} B-\operatorname{supp} A$. It can be shown that $\operatorname{supp} W_{A B}(x, \cdot) \subset \Omega$ for almost every $x \in \mathbb{R}^{s}$, and

$$
\begin{equation*}
\left\|W_{A B}\right\|_{x} \leqslant M_{3}=\min \left(\|B\|_{x}\left\|\Sigma_{A}\right\|_{x},\|A\|_{x}\left\|\sum_{B}\right\|_{x}\right) . \tag{3.26}
\end{equation*}
$$

Moreover, since $B \in \mathscr{P}_{d}$ and $A \in \mathscr{P}_{i}$, for each $x \in \mathbb{R}^{s}$,

$$
\int_{\Omega} W_{A B}(x, z) d z=1 .
$$

Therefore,

$$
\begin{equation*}
\|f-p r f\|_{p}^{p} \leqslant \int_{\mathbb{R}^{s}}\left[\int_{\Omega} W_{A B}(x / h, z) S_{z=h} f(x) d z\right]^{p} d x \tag{3.27}
\end{equation*}
$$

and hence

$$
\|f-p r f\|_{p}^{p} \leqslant M_{3}^{p} \int_{\mathbb{R}^{s}}\left[\int_{\Omega}\left|S_{z, h} f(x)\right| d z\right]^{p} d x
$$

Applying Hölder's inequality and changing the order of integration, we obtain the estimate

$$
\|f-p r f\|_{p}^{p} \leqslant M_{3}^{p} \operatorname{vol}(\Omega)^{p-1} \int_{\Omega}\left\|S_{z \sim h} f\right\|_{p}^{p} d z
$$

Hence, formula (2.6) is satisfied by

$$
C_{3}=M_{3} \operatorname{vol}(\Omega)(1+\operatorname{diam}(\Omega \cup\{0\})) .
$$

Lemma 5. If the assumptions of Theorem 2 are satisfied and $f \in W_{p}^{r+1}\left(\mathbb{R}^{s}\right)$ then

$$
\begin{equation*}
\|f-p r f\|_{p} \leqslant M_{4}|h|_{\infty}^{r+1}|f|_{p, r+1} \tag{3.28}
\end{equation*}
$$

Proof. First, if condition (2.7) is satisfied then, following formulas (3.25) and (3.12), for every $k \in \mathbb{Z}_{+}^{s}$ such that $|k| \leqslant r$ we have

$$
\begin{aligned}
c_{k}(x) & =\int_{\Omega} W_{A B}(x / h, z) c_{k}(x+z \circ h) d z \\
& =\sum_{0 \leqslant j \leqslant k} h^{j} \int_{\Omega} W_{A B}(x / h, z) c_{j}(z) d z c_{k-j}(x) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{\Omega} W_{A B}(x / h, z) c_{j}(z) d z=\delta_{j 0} \quad \text { if } \quad j \in \mathbb{Z}_{+}^{s},|j| \leqslant r . \tag{3.29}
\end{equation*}
$$

Now, let $f \in W_{p}^{r+1}\left(\mathbb{R}^{s}\right)$. Substituting Taylor's formula

$$
\begin{aligned}
S_{z=h} f(x)= & \sum_{0<|k| \leqslant r} h^{k} c_{k}(z) D^{k} f(x) \\
& +\sum_{|k|=r+1} h^{k} c_{k}(z) \int_{I}(r+1)(1-\dot{\zeta})^{r} D^{k} f(x+\xi z s h) d \xi
\end{aligned}
$$

into (3.27) and using formula (3.29), we obtain

$$
\begin{aligned}
\|f-p r f\|_{p}^{p}= & \int_{\mathbb{R}^{s}}\left\{\int_{\Omega} W_{A B}(x / h, z) \sum_{|k|=r+1} h^{k} c_{k}(z)\right. \\
& \left.\times \int_{1}(r+1)(1-\xi)^{\prime} D^{k} f(x+\xi z=h) d \xi d z\right\}^{p} d x
\end{aligned}
$$

By applying estimate (3.26) and Hölder's inequality, and changing the order of integration, we can deduce that (3.28) holds.

Proof of Formula (2.8), Let us take an arbitrary function $g \in H_{\rho}^{r+1}\left(\mathbb{R}^{s}\right)$. Then

$$
\|f-p r f\|_{p} \leqslant\|f-g\|_{p}+\|g-p r g\|_{p}+\|p r(g-f)\|_{p}
$$

Applying Theorem 1 and Lemma 5, we obtain

$$
\|f-p r f\|_{p} \leqslant\left(1+C_{1} C_{2}\right)\|f-g\|_{p}+M_{4}|h|^{r+1}|g|_{p . r+!}
$$

We can derive formula (2.8) from this estimate using inequality (3.8).

3.5. Approximation of $W_{p}^{m}\left(\mathbb{R}^{s}\right)$

Lemma 1 was proved in Section 3.3. Let us prove the remaining results of Section 2.2. As in Section 3.3, the subscripts " h " are suppressed.

Proof of Lemma 2. According to (3.11), $S_{h}^{k} f=h^{k} Q_{-h}^{k} D^{k} f$. Thus, it follows from (3.17) and (3.9) that $\partial^{k} r^{A} f=\left\langle Q_{h}^{k} e^{A}, D^{k} f\right\rangle$. But, following (3.2) and (3.10),

$$
\begin{aligned}
Q_{h}^{k} v^{A}(l \circ h) & =h^{-e} Q_{h}^{k} T_{-l: h} M_{e h} A \\
& =h^{-e} T_{-l / h} M_{e, h} Q_{e}^{k} A=v^{-A(k)}(l: h) .
\end{aligned}
$$

Hence, the first formula from (2.11) is proved; the second one can be obtained analogously.

Proof of Theorem 3. If $X \in \mathscr{S}_{m}$ then $X=E_{m e} \cup Y$ and $E_{m a-} \cup Y \in \mathscr{F}_{0}$ if
$j \in \mathbb{Z}_{+}^{s},|j| \leqslant m$. Moreover, if $A \in \mathscr{P}_{i}$ then $A(j) \in \mathscr{P}_{i}$. Hence, it follows from Lemmas 1 and 2 that

$$
\begin{equation*}
D^{j} p^{X} r^{A} f=p^{m e-j, Y_{r} A(j)} D^{j} f, \tag{3.30}
\end{equation*}
$$

and inequalities (2.13), (2.14) can be deduced from Theorems 1 and 2 (the constant in the second inequality in (2.13) equals 1 , since B_{X} is nonnegative and belongs to \mathscr{P}_{d}). If condition (2.7) is satisfied, then putting $f=c_{k}$ ($|k| \leqslant r$) into (3.30) and applying formula (3.13), we obtain the equality

$$
p^{m e-j . Y_{r}} A^{A(j)} c_{q}=c_{q} \quad \text { if } \quad|q| \leqslant m-r,
$$

which is the analogue of (2.7) for $B_{m e-j, Y}$ and $A(j)$. Thus, estimate (2.15) also is satisfied.

Proof of Lemma 3. It follows from definitions (2.1), (2.2) that if A is defined as in the lemma, then for every $f \in L_{1}\left(\mathbb{R}^{s}\right)^{\text {loc }}$,

$$
p^{X} r^{A} f=\sum_{|k| \leqslant r} \xi_{k} T_{k=h} p^{X} r^{G} f .
$$

Hence, taking $f=c_{j}$ where $|j| \leqslant r$, and applying (3.19), (3.20) and (3.12), we obtain the equality

$$
p^{X} r^{A} c_{j}=\sum_{|k| \leqslant r} \xi_{k} \sum_{0 \leqslant q \leqslant j} \sum_{0 \leqslant n \leqslant q} \sum_{0 \leqslant i \leqslant n} \alpha_{j-q}^{G} \beta_{q-n}^{X} c_{n-i}(k) h^{j-i} c_{i}
$$

which in an elementary way can be transformed to

$$
p^{X} r^{A} c_{j}=\sum_{0 \leqslant i \leqslant j} \sum_{|k| \leqslant r} \xi_{k} \sum_{0 \leqslant q \leqslant i} \sum_{0 \leqslant n \leqslant q} \alpha_{i-q}^{G} \beta_{q-n}^{X} c_{n}(k) h^{i} c_{j-i} .
$$

Hence, the system of equations, $p^{X} r^{A} c_{j}=c_{j}$ if $|j| \leqslant r$, is equivalent to the system of linear equations

$$
\sum_{|k| \leqslant r} \xi_{k} \sum_{0 \leqslant q \leqslant i} \sum_{0 \leqslant n \leqslant q} \alpha_{i-q}^{G} \beta_{q-n}^{X} c_{n}(k)=\delta_{0 i}, \quad|i| \leqslant r,
$$

which is uniquely solvable due to the fact that the matrix $\left(c_{n}(k)\right)_{|n| \leqslant r .|k| \leqslant r}$ is nonsingular and $\alpha_{0}^{G}=\beta_{0}^{X}=1$. Hence, the lemma is proved.

3.6. Stability of the Approximation

Proof of Theorem 4. First, we prove that (2.16) implies (2.17). It follows from the definitions of p^{X} and r^{A} that condition (2.17) is equivalent to

$$
\begin{equation*}
\forall l \in \mathbb{Z}^{s}\left\langle A, T_{l} B_{X}\right\rangle=\delta_{0 l} \tag{3.31}
\end{equation*}
$$

Let N be an arbitrary open set such that $N \cap \operatorname{supp} B_{X} \neq \varnothing$ and let $K=$ $\left\{l \in \mathbb{Z}^{s}: N \cap\left(\operatorname{supp} B_{X}-l\right) \neq \varnothing\right\}$. If (2.16) holds then, according to the theorem of Dahmen and Micchelli [3], the set $\left\{\left.\left(T_{l} B_{X}\right)\right|_{N}: l \in K\right.$ \} is linearly independent. We want to find a function A which satisfies (3.31) and the conditions

$$
\operatorname{supp} A \subset N,\left.\quad A\right|_{N}=\sum_{v \in K} j_{v} G_{v}, \quad \text { where } \quad G_{v}=\left.\left(T_{v} B_{Y}\right)\right|_{N}
$$

Substituting these formulas into (3.31) we obtain the system of linear equations for γ_{v}

$$
\sum_{v \in K} \gamma_{v}\left\langle G_{v}, G_{l}\right\rangle=\delta_{0 l}, \quad l \in K,
$$

which is uniquely solvable due to the linear independence of the functions G_{4}. Summing up Eqs. (3.31) with respect to l, we can show that $A \in \mathscr{F}$; therefore condition (2.17) is satisfied.

Now, let us prove that (2.17) implies (2.18). Following Theorem 3, if (2.17) holds then for every $u \in W_{p}^{m}\left(\mathbb{R}_{h}^{s}\right)$,

$$
\|u\|_{p, m}=\left\|r^{4} p^{X} u\right\|_{p, m} \leqslant C_{1}\left\|p^{X} u\right\|_{p, m} .
$$

Thus, (2.18) is satisfied.
Finally, we must prove that if condition (2.16) is not satisfied then (2.18) does not hold. Let Y be such a submatrix of X that $v=\mid \operatorname{det} Y>1$. It follows from definition (1.4) that $B_{Y}=v^{-1} \chi_{A_{Y}}$, where $N_{Y}=\operatorname{int}\left(\operatorname{supp} B_{Y}\right.$). Further, since B_{Y} belongs to \mathscr{P}_{d}, the set $K_{Y}=\left\{l \in \mathbb{Z}^{s}: N_{Y} \cap\left(N_{Y}-l\right) \neq \varnothing\right\}$ contains v elements and every vector $i \in \mathbb{Z}^{s}$ can be uniquely represented in the form $i=l+Y j$, where $l \in K_{Y}, j \in \mathbb{Z}^{s}$.

Let $L>1$ be a fixed number, let n, q be two different elements of K_{Y}, and let us define the mesh function

$$
\left.v((l+Y j)=h)=\left(\delta_{l n}-\delta_{l q}\right) \chi_{[0 . L e]}(l+Y j) \subset h\right)
$$

where $[0, L e]=\left\{x \in \mathbb{R}^{s}: 0 \leqslant x \leqslant L e\right\}$. It can be shown that there exist numbers ξ, ξ^{\prime} independent of L, h and such that

$$
\xi L^{s, p}|e / h|^{r} \leqslant|v|_{p . r} \leqslant \zeta^{\prime} L^{s \prime p}\left|e_{i} h\right|^{r} . \quad 0 \leqslant r \leqslant m .
$$

Let us now consider $p^{X} v$. First, let us observe that $p^{Y} v$ is nonzero in a neighbourhood of the boundary of [$0, L e]$; strictly speaking. there exists η° such that $p^{r^{\prime}} v(x)=0$ if $x \in\left[\eta^{\prime} h, L e-\eta^{\prime} h\right]$ or $x \notin\left[-\eta^{\prime} h, L e+\eta^{\prime} h\right]$. Heace. according to (3.18), there exists η independent of $L . h$ and such that
$p^{x} v(x)=0$ if $x \in[\eta h, L e-\eta h]$ or $x \notin[-\eta h, L e+\eta h]$. Therefore, there exists a number κ such that

$$
\left|p^{X} v\right|_{p, r} \leqslant \kappa L^{(s-1) / p}|e / h|^{r}|h|^{1 / p}, \quad 0 \leqslant r \leqslant m
$$

Since L can be taken arbitrarily, (2.18) is not satisfied. Thus, the proof is finished.

Proof of the Corollary. It follows from Theorem 3 and condition (2.18) that

$$
\left\|p^{X} u\right\|_{p, m} \leqslant\|u\|_{p, m}, \quad\left\|p^{X} u\right\|_{p, n} \geqslant K\|u\|_{p, n}
$$

Formula (2.19) follows from these estimates and the inequality

$$
|u|_{p, n} \leqslant 2^{n-r}|e / h|^{n-r}|u|_{p, r} \quad \text { if } \quad r \leqslant n \leqslant m .
$$

which is true for every $u \in W_{p}^{m}\left(\mathbb{R}_{h}^{s}\right)$ (and follows from the formula $\left\|\partial^{e_{i}} u\right\|_{p} \leqslant$ $2\|u\|_{p}\left(h_{i}\right)$. This completes the proof.

3.7. Proofs of the Results from Section 2.4

First, let us prove the following formula: if $A \in L_{x}\left(\mathbb{R}^{s}\right)_{b}, f \in L_{p}\left(\mathbb{R}^{s}\right)$, $u \in L_{p^{\prime}}\left(\mathbb{R}_{h}^{s}\right)$, then

$$
\begin{equation*}
\left\langle p^{A} u, f\right\rangle=\left[u, r^{A} f\right] \tag{3.32}
\end{equation*}
$$

It follows from Theorem 1 that if the above assumptions are satisfied, then both sides of formula (3.32) are well defined and

$$
\left\langle p^{A} u, f\right\rangle=\int \lim _{n \rightarrow \infty} g_{n}(x) d x, \quad\left[u, r^{A} f\right]=\lim _{n \rightarrow \infty} \int g_{n}(x) d x
$$

where

$$
g_{n}(x)=\sum_{l \in \mathbb{E}^{5} \cdot|l| \leqslant n} f(x) A(x / h-l) u(l h) .
$$

Since the support of A is bounded, $g_{n}(x) \rightarrow f(x) p^{A} u(x)$ almost everywhere. Moreover, g_{n} are uniformly bounded by an integrable function: $\left|g_{n}(x)\right| \leqslant$ $|f(x)| p^{A}(|u|)(x)$. Hence, the limit of integrals equals the integral of limits and thus, formula (3.32) is proved.

Proof of Lemma 4. According to Theorem 4, there exists a function $A \in \mathscr{P}_{i}$ such that $r^{A} p^{Y} u=u$ for each $u \in m\left(\mathbb{R}_{h}^{2}\right)$. Thus, it follows from definition (2.26) that

$$
\begin{equation*}
r p^{Y} u=r^{A} p^{Y} u=u \quad \text { for each } \quad u \in X_{h} \tag{3.33}
\end{equation*}
$$

Therefore, if $q=p^{r}$, then the first condition from (2.24) is satisfied. Next, it follows from the definition of F that

$$
\|p u-\psi q u\|_{F}=\left\|p^{X} u-p^{Y} u\right\|_{2}
$$

According to (3.33), every function $u \in X_{h}$ can be represented as $u=r^{4} f$, where $f=p^{Y} u \in W_{2}^{1}\left(\mathbb{R}^{2}\right)$, and $\|f\|_{i .2} \leqslant K\|u\|_{1.2}$ due to Theorem 1. Applying Theorem 2 , we obtain the estimate

$$
\left\|p^{X} r^{A} f-p^{Y^{2}} r^{A} f\right\|_{2} \leqslant\left\|p^{X} r^{A} f-f\right\|_{2}+\left\|p^{Y} r^{A} f-f\right\|_{2} \leqslant K\|u\|_{1.2}|h| .
$$

Thus, $\|p u-\psi q u\|_{F} \leqslant K\|u\|_{1,2}|h|$, and condition (2.24) is satisfied.
Proof of Formula (2.28). Following (2.21), (2.27), and (2.25),

$$
a_{h}(u, v)=\sum_{i, j=1}^{2}\left\langle b_{i j} D_{i} p^{Y} u, D_{j} p^{Y} v\right\rangle+\left\langle b p^{X} u, p^{X} v\right\rangle
$$

Applying formula (2.10) we obtain $D_{i} p^{Y} u=p^{Y(1)} C_{i}^{-} u$, and thus, formaia (2.28) can be obtained by the use of (3.32) and (3.14).

Acknowledgments

The author is grateful to Professor Zbigniew Ciesielski and Dr. Andrzej Wakulicz for helpful discussions and advice concerning this paper.

References

1. J.-P. Aurin. "Approximation of Elliptic Boundary-Value Probiems," Wiley-Interscierce. New York, 1972.
2. C. de Boor and K. Höllig, B-splines from parallelepipeds, J. Analyse Wath 42 (1982:1983). 99-115.
3. W. Dahmen and C. A. Micchelli, On the local linear independence of translates of a box spline, Studia Math. 82 (1985), 243-263.
4. H. Johnen and K. Scherer, On the equivalence of the K-functional and moduli of continuity and some applications, in "Constructive Theory of Functions of Several Variables. Proceedings, Oberwolfach 1976," Lecture Notes in Mathematics. Vol. 571. Springer-Verlag, Berlin/New York, 1977.
5. T. Regińska. External approximation of eigenvalue problems in Banach spaces, RARO Model. Math. Anal. Numer. 18 (1984), 161-174.
6 T. Reginska, "On some properties of external approximation of Sobolev spaces." preprint 292. Institute of Mathematics, Polish Academy of Sciences, 1984.
